본 논문에서는 고성능 디지털 위상 고정 루프(DPLL)에 적용 가능한 새로운 잠금 기법을 소개한다. 이 연구는 LC 기반 디지털 제어 발진기(DCO)에서 발생하는 양자화 오류를 줄이기 위해 추가 서모미터 코드를 사용한다. 본 방식은 전체 DCO 코드를 서모미터 방식으로 구현하지 않음에도 불구하고 높은 선형성을 통해 양자화 오류를 감소시킨다. 초기 잠금 단계에서 바이너리 코드를 사용하고, 잠금이 완료되면 서모미터 코드로 전환하여 높은 주파수 대비 선형성과 낮은 지터 특성을 달성한다. 이 접근법은 낮은 DCO 이득(Kdco) 값을 요구하는 응용에서 서모미터 코드만을 사용하는 기존 방식과 비교하여 스위치의 수를 현저히 줄이고 발진기의 면적을 최소화한다. 또한, 지터 특성은 서모미터 코드만을 사용하는 방식과 동일한 수준을 유지한다. SystemVerilog 및 Verilog HDL을 사용한 모델링과 RTL 수준에서의 설계를 통해 이 기법의 효과가 입증되었다.
음성인식의 실용화에 가장 저해되는 요소는 배경잡음과 채널잡음에 의한 왜곡이다. 일반적으로 배경잡음은 음성인식 시스템의 성능을 저하시키고 이로 인해 사용 장소의 제약을 받게 한다. DSR (Distributed Speech Recognition) 기반의 음성인식 역시 이와 같은 문제로 성능 향상에 어려움을 겪고 있다. 이러한 문제를 해결하기 위해 다양한 잡음제거 알고리듬이 사용되고 있으나 낮은 SNR환경에서 부정확한 잡음추정으로 발생하는 스펙트럼 손상과 잔존 잡음은 음성인식기의 인식환경과 학습 환경의 불일치를 만들게 되어 인식률을 저하시키는 원인이 된다. 본 논문에서는 이와 같은 문제를 해결하기 위해 잡음제거 알고리듬으로 MMSE-STSA 방법을 사용하였고 손상된 스펙트럼을 보상하기 위해 Ideal Binary Mask를 이용하였다. 잡음환경 (SNR 15 ~ 0 dB)에 따른 실험결과 제안된 방법을 사용했을 때 향상된 스펙트럼을 얻을 수 있었고 향상된 인식성능을 확인했다.
Microalgae have great potential in the biomedical and pharmaceutical industries as a new type of bioreactor that can produce proteins for specific purposes, including recombinant proteins, pharmaceuticals, and industrial enzymes. Despite the production advantages and importance of microalgae-based expression systems, studies on secretion efficiency are limited. In this study, for stable expression and efficient secretion of the heterologous protein (human SCF and human INFγ) in Chlorella vulgaris, we constructed SP:hSCF:His and SP:hINFγ:His plant binary vectors using the signal peptide (SP) of Chlamydomonas reinhardtii, and we obtained stable transformants through the effective agrobacterium-mediated transformation of these vectors. Transformants with accurately inserted hSCF and hINFγ demonstrated stably increased mRNA and protein expression using RT-PCR and western blotting under the same culture conditions. Following the analysis of the proteins secreted into the culture medium using ELISA, it was confirmed that hINFγ was effectively produced in the transformed C. vulgaris culture medium. The overall findings indicate that the combination of heterologous protein and SP may be crucial for ensuring the expression and secretion of recombinant proteins in Chlorella culture systems.
최근 정적분석 기반의 시그니처 및 패턴 탐지 기술은 고도화되는 IT 기술에 따라 한계점이 드러나고 있다. 이는 여러 아키텍처에 대한 호환 문제와 시그니처 및 패턴 탐지의 본질적인 문제이다. 악성코드는 자신의 정체를 숨기기 위하여 난독화, 패킹 기법 등을 사용하고 있으며 또한, 코드 재정렬, 레지스터 변경, 분기문 추가 등 기존 정적분석 기반의 시그니처 및 패턴 탐지 기법을 회피하고 있다. 이에 본 논문에서는 이러한 문제를 해결할 수 있는 머신러닝을 통한 LLVM IR 코드 이미지 기반 악성코드 정적분석 자동화 기술을 제안한다. 바이너리가 난독화되거나 패킹된 사실에 불구하고 정적 분석 및 최적화를 위한 중간언어인 LLVM IR로 디컴파일한다. 이후 LLVM IR 코드를 이미지로 변환하여 CNN을 이용한 알고리즘 중 전이 학습 및 Keras에서 지원하는 ResNet50v2으로 학습하여 악성코드를 탐지하는 모델을 제시한다.
최근 Golang은 크로스 컴파일이 가능하고 코드 생산성이 높다는 특성으로 프로그래밍 언어 점유율 순위가 매년 지속적 상승하고 있다. 하지만 최근 악성코드 개발자들 또한 랜섬웨어, 백도어 등 악성코드 배포에 자주 활용하고 있다. 특이한 점으로 오픈소스 언어인 Golang은 새로운 버전이 출시될 때, 삭제된 심볼 복구에 필요한 중요한 값들이 포함된 Pclntab이라는 구조체의 값과 구성순서가 상시적으로 변경되고 있다. 개발자 측면에서는 코드 가독성 및 생산성을 위해 구조를 자주 변경하는 것이 문제는 아니나, 사이버보안 측면에서는 구조가 변경된 새로운 버전이 악성코드에 활용될 수 있는 문제점이 존재한다. 따라서 본 논문에서는 Golang 신버전 대상 실행파일 탐지·분석시스템(GoAsap)를 제안하고 기존 바이너리 분석 도구 6종과 비교·평가하여 제안한 시스템의 성능을 검증하였다.
구글에서 공개한 Tensorflow를 이용한 여러 학문 분야의 연구가 활발하다. 농업 시설환경을 대상으로 한 빅데이터의 축적이 증가함과 아울러 실효적인 정보 획득을 위한 각종 데이터 분석 및 마이닝 기법에 대한 연구 또한 활발한 상황이다. 한편, 타 분야의 성공적인 심층학습기법 응용사례에 비하여 농업 분야에서의 응용은 초기 성장 단계라 할 수 있다. 이는 농업 현장에서 취득한 정보의 난해성 및 완성도 높은 생육/환경 모델링 정보의 부재로 실효적인 전과정 처리 기술 도출에 소요되는 시간, 비용, 연구 환경이 상대적으로 부족하기 때문일 것이다. 특히, 센서 기반 데이터 취득 기술 증가에 따라 비약적으로 방대해진 수집 데이터를 시간 복잡도가 높은 심층 학습 모델링 연산에 기계적으로 단순 적용할 경우 시간 효율적인 측면에서 성공적인 결과 도출에 애로가 있을 것이다. 매우 높은 시간 복잡도를 해결하기 위하여 제시된 하드웨어 가속 기능의 경우 일부 개발환경에 국한이 되어 있다. 일례로, 구글의 Tensorflow는 오픈소스 기반 병렬 클러스터링 기술인 MPICH를 지원하는 알고리즘을 공개하지 않고 있다. 따라서, 본 연구에서는 심층학습 기법 연구에 있어서, 예상 가능한 다양한 자원을 활용하여 최대한 연산의 결과를 빨리 도출할 수 있는 하드웨어적인 접근 방법을 모색하였다. 호스트에서 수행하는 일방적인 학습 알고리즘과 달리 이기종간 심층 학습이 가능하기 위해선 우선, NFS(Network File System)를 이용하여 데이터 계층이 상호 연결이 되어야 한다. 이를 위해서 고속 네트워크를 기반으로 한 NFS의 이용이 필수적이다. 둘째로 제한된 자원의 한계를 극복하기 위한 메모 공유 라이브러리가 필요하다. 셋째로 이기종간 프로세서에 최적화된 병렬 처리용 컴파일러를 이용해야 한다. 가장 중요한 부분은 이기종간의 처리 능력에 따른 작업을 고르게 분배할 수 있는 작업 스케쥴링이 수행되어야 하며, 이는 처리하고자 하는 데이터의 형태에 따라 매우 가변적이므로 해당 데이터 도메인에 대한 엄밀한 사전 벤치마킹이 수행되어야 한다. 이러한 요구조건을 대부분 충족하는 Open-CL ver1.2(https://www.khronos.org/opencl/)를 이용하였다. 최신의 Open-CL 버전은 2.2이나 본 연구를 위하여 준비한 4가지 이기종 시스템에서 모두 공통적으로 지원하는 버전은 1.2이다. 실험적으로 선정된 4가지 이기종 시스템은 1) Windows 10 Pro, 2) Linux-Ubuntu 16.04.4 LTS-x86_64, 3) MAC OS X 10.11 4) Linux-Ubuntu 16.04.4 LTS-ARM Cortext-A15 이다. 비교 분석을 위하여 NVIDIA 사에서 제공하는 Pascal Titan X 2식을 SLI로 구성한 시스템을 준비하였다. 개별 시스템에서 별도로 컴파일 된 바이너리의 이름을 통일하고, 개별 시스템의 코어수를 동일하게 균등 배분하여 100 Hz의 데이터로 입력이 되는 온도 정보와 조도 정보를 입력으로 하고 이를 습도정보에 Linear Gradient Descent Optimizer를 이용하여 Epoch 10,000회의 학습을 수행하였다. 4종의 이기종에서 총 32개의 코어를 이용한 학습에서 17초 내외로 연산 수행을 마쳤으나, 비교 시스템에서는 11초 내외로 연산을 마치는 결과가 나왔다. 기보유 하드웨어의 적절한 활용이 가능한 심층학습 기법에 대한 연구를 지속할 것이다
본 논문에서는 저전압 고해상도 축차근사형 아날로그-디지털 변환기를 위한 시간-도메인 비교기를 제안한다. 제안하는 시간-도메인 비교기는 클럭 피드-스루 보상회로를 포함한 전압제어지연 변환기, 시간 증폭기, 그리고 바이너리 위상 검출기로 구성된다. 제안하는 시간-도메인 비교기는 작은 입력 부하 캐패시턴스를 가지며, 클럭 피드-스루 노이즈를 보상한다. 시간-도메인 비교기의 특성을 분석하기 위해 다른 시간-도메인 비교기를 가지는 두 개의 1V 10-bit 200-kS/s 축차근사형 아날로그-디지털 변환기가 0.18-${\mu}m$ 1-poly 6-metal CMOS 공정에서 구현된다. 11.1kHz의 아날로그 입력신호에 대해 측정된 SNDR은 56.27 dB이며, 제안된 시간-도메인 비교기의 클럭 피드-스루 보상회로와 시간 증폭기가 약 6 dB의 SNDR을 향상시킨다. 구현된 10-bit 200-kS/s 축차근사형 아날로그-디지털 변환기의 전력소모와 면적은 각각 10.39 ${\mu}W$와 0.126 mm2 이다.
자동으로 해킹을 수행하는 도구 및 기법의 발전으로 인해 최근 신규 보안 취약점들이 증가하고 있다. 대표적인 취약점 DB인 CVE를 기준으로 2010년부터 2015년까지 신규 취약점이 약 8만건이 등록되었고, 최근에도 점차 증가하는 추세이다. 그러나 이에 대응하는 방법은 많은 시간이 소요되는 전문가의 수동 분석에 의존하고 있다. 수동 분석의 경우 취약점을 발견하고, 패치를 생성하기까지 약 9개월의 시간이 소요된다. 제로데이와 같은 빠른 대응이 필요한 취약점에 대한 위험성이 더 부각되는 이유이다. 이와 같은 문제로 인해 최근 자동화된 SW보안 취약점 탐색 및 대응 기술에 대한 관심이 증가하고 있다. 2016년에는 바이너리를 대상으로 사람의 개입을 최소화하여 자동화된 취약점 분석 및 패치를 수행하는 최초의 대회인 CGC가 개최 되었다. 이 외에도 세계적으로 Darktrace, Cylance 등의 프로젝트를 통해 인공지능과 머신러닝을 활용하여 자동화된 대응 기술들을 발표하고 있다. 그러나 이러한 흐름과는 달리 국내에서는 자동화에 대한 기술 연구가 미비한 상황이다. 이에 본 논문에서는 자동화된 SW 보안 취약점 탐색 및 대응 기술을 개발하기 위한 선행 연구로서 취약점 탐색과 대응 기술에 대한 선행 연구 및 관련 도구들을 분석하고, 각 기술들을 비교하여 자동화에 용이한 기술 선정과 자동화를 위해 보완해야 할 요소를 제안한다.
잘못된 메모리 접근으로부터 발생되는 오류는 C언어로 작성된 프로그램에서 가장 빈번하게 발생하는 오류이다. 이러한 오류를 자동으로 검출하기 위한 기존의 상용화 도구 및 연구결과는 수행시간에 테스트 대상 프로그램에 가해지는 부가적인 오버헤드가 매우 크거나 검출할 수 있는 메모리 접근오류의 종류가 제한적이다. 본 논문에서는 기존연구의 한계점을 개선한 새로운 메모리 접근오류 검출기법을 제안하고 실험을 통해 기존연구와의 비교분석을 수행하였다. 본 논문은 C언어 기반 프로그램의 소스코드 분석기법에 기반하고 있으며, 테스트 대상 프로그램에 할당된 동적 메모리 블록의 주소 범위에 대해 컬러링 기법을 적용한다. 본 논문에서 제안하는 오류검출기법은 기존의 바이너리 코드 분석기법에 비해 다양한 형태의 메모리 접근오류를 검출할 수 있으며, 테스트 대상 프로그램의 수행시간에 요구되는 메타데이터의 유지 및 갱신연산에 따른 공간 및 성능오버헤드가 기존의 소스코드 분석기법에 비해 개선되었다. 또한 본 논문에서 제안하는 기법은 테스트 대상 프로그램과 공유 라이브러리간의 호환성 문제를 일으키지 않으며, 메모리 할당함수의 내부 메커니즘을 변경하지 않는 특징을 갖고 있다.
소프트웨어의 취약성을 검증하기 위하여 소프트웨어의 구조를 유추하여 유추된 구조를 활용하여 테스트하는 방법이 주목받고 있다. 이와 같은 방법을 사용하기 위해서 효과적인 소프트웨어의 구조 유추 방법이 요구된다. 많이 사용되는 DFG(Data Flow Graph), CFG(Control Flow Graph) 이나 CFA(Control Flow Automata)와 같은 그래프나 트리 방식은 소프트웨어 모델을 구조적으로 표현하지 못하는 단점을 가진다. 본 논문에서는 이러한 단점을 극복할 수 있는 방법을 제시한다. 제시된 방법은 바이너리 코드에 다양한 입력데이터 들을 부여하여 입력데이터별 CFG를 생성하고, 생성된 CFG들이 구조적으로 표현될 수 있도록 계층적 제어 흐름 그래프(Hierarchical Control Flow Graph, HCFG)를 작성한다. 또한 제안하는 HCFG을 생성하는데 요구되는 그래프의 구성요소와 점진적 그래프 생성 알고리듬도 제시한다. 제안한 방법론을 공개된 SMTP(Simple Mail Transfer Protocol) 서버 프로그램에 적용시켜 소프트웨어의 모델을 작성하는 실험을 수행하고, 생성된 모델과 실제 소프트웨어 구조를 비교 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.