• Title/Summary/Keyword: 미소재료

Search Result 238, Processing Time 0.024 seconds

Behavior Analysis of the Treated Femur and Design of Composite Hip Prosthesis (대퇴부 거동 해석 및 복합재료 보철물 설계)

  • 임종완;하성규
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.119-130
    • /
    • 2002
  • The nonlinear finite element program has been developed to analyze the design performance of an artificial hip prosthesis and long term behavior of a treated femur with stems made of composite material after cementless total hip arthroplasty(THA). The authors developed the three dimentional FEM models of femoral bone with designed composite stem which was taken with elliptic cross section of 816 brick elements under hip contact load and muscle farce in simulating single leg stand. Using the program, density changes, stress distributions and micromotions of the material femoral bone were evaluated by changing fiber orientation of stems for selected manufacturing method such as plate cut and bend mold. The results showed that the composite materials such as AS4/PEEK and T300/976 gave less bone resorption than the metallic material such as cobalt chrome alloy, titanium alloy and stainless steal. It was found that increasing the long term stability of the prosthesis in the femur could be obtained by selecting the appropriate ply orientation and stacking sequence of composite.

Post-buckling Behavior and Vibration Characteristics of Patched Reinforced Spherical Composite Panels (패치로 보강된 구형 복합재료 패널의 후좌굴 거동 및 진동 특성해석)

  • Lee, J.J.;Yeom, C.H.;Lee, I.
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.27-34
    • /
    • 2001
  • The finite element method based on the total Lagrangian description of the motion and the Hellinger-Reissner principle with independent strain is applied to investigate the nonlinear behavior and vibration characteristics for patched reinforced laminated spherical panels. The patched elements are formulated using variable thickness at arbitrary point on the reference plane. The cylindrical arc-length method is adopted to obtain a nonlinear solution. The post-buckled vibration is assumed to be small amplitude. The effect of patch in the spherical shell Panel is investigated on the nonlinear response and the fundamental vibration characteristics. The present results show that the load-carrying capability can be improved by reinforcing patch. The fundamental frequency of patched panel is lower than that of equivalent shell panel. However, the fundamental frequency of patched panel does not decrease greatly due to the increase of nonlinear geometrical stiffness under loading.

  • PDF

The Signal Characteristics from Crack of Brittle Materials by Vickers Load (비커스 압입 하중에 의한 취성재료의 균열 신호특성)

  • Nam, Ki-Woo;Kim, Hyun-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.125-131
    • /
    • 2002
  • we analyzed acoustic emission signals obtained from three kinds of brittle materials under compression load by Vickers hardness tester. The results obtained can be summarized as follows; The signal in each material could be divided into three signal based on the properties of load. All specimens were not detected acoustic emission signals in stage II which was load constant region., and were detected in stage I and stage III. Glass was detected high amplitude signals in stage III. $Al_2O_3\;and\;Al_2O_3/Sic$ were detected high amplitude signals in stage I.

Properties of Surface Electrical Conduction in Materials for Outdoor Insulator (옥외 애자용 재료의 표면 전기전도특성)

  • 박영국;강성화;정수현;이운석;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.207-210
    • /
    • 1998
  • Surface electrical conduction in insulator is most important factor to assess the insulation performances of outdoor insulating materials. In this paper, contamination performance of the widely used materials for outdoor insulator - porcelain, EPDM, Silicone rubber - were discussed by measuring properties of average leakage current and scintillation discharge pulses under artificial contamination conditions. The artificial contaminations used were deionized distilled water fog, 0.5wt% NaCl salt fog of light pollution and 2wt% NaCl salt fog of medium pollution. The average leakage current was appeared linearly with applied voltage at dry and clean surface condition. The magnitude of leakage current was almost same at different kinds of samples. In case of deionized distilled water fog, the characteristics of leakage current and applied voltage was most different to that in case of dry and clean condition. In case of salt fog pollution condition. The leakage current was increased above critical voltage. The scintillation discharges were also activated at the level the leakage current and scintillation discharges were increased with increasing pollution degree. The resistance to pollution properties of silicone rubber appeared excellent among them.

  • PDF

Electrical Conduction Properties of Surface in Materials for Outdoor Insulator (옥외 애자용 재료의 표면 전기전도 특성)

  • 박영국;이운석;정수현;장동욱;임기조
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.758-762
    • /
    • 1998
  • Electrical conduction property of insulator surface is most important factor to assess the insulation performances of outdoor insulating materials. In this paper, contamination performance of the materials to be used for outdoor insulator such as porcelain, EPDM, silicone rubber was discussed by measuring properties of average leakage current and scintillation discharge pulses under salt fog conditions. The fog was applied by nozzle in chamber and fogging fluids were deionized distilled water, 0.5wt% NaCI solution and 2wt% NaCl solution. The average leakage current showed linearly with applied voltage at dry and clean surface condition. The magnitude of leakage current was almost same at different kinds of samples. In case of deionized distilled water fog, the characteristics of leakage current and applied voltage were much different to those in case of dry and clean condition with 2wt% salt fog. In case of slat fog pollution condition, the leakage current was increased above critical voltage. the scintillation discharges were also activated at the level. The leakage current and scintillation discharges were increased with increasing pollution degree. The resistance to pollution properties of silicone rubber appeared excellent among them.

  • PDF

Development of AlN/Al-Ti Functionally Gradient Materials (AlN/Al-Ti계 경사기능재료의 개발)

  • 이현규;박진성;공창덕
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.49-59
    • /
    • 2001
  • Functionally gradient materials(FGMs) generally consist of different material components, such as ceramics and metals. Continuous changes in their composition, microstructure, porositys, and so on result in gradients in the properties of FGMs. In this study AlN/Al-$Al_3$Ti FGM cubes were fabricated by the powder metallurgical process, and the characteristics of the FGMs were investigated. Powders of Mg and Ti mixed with Al in different ratios or the stack of the mixed powders having a stepwisely controlled compositional gradient from one plane to another were formed in a steel mold. The more the composition of Mg and sintering temperature are increased, the more the amount of AlN is formed. AlN and $Al_3$Ti distributed with continuously gradient composition were detected by XRD analysis and also revealed in optical microstructures, and microhardness tests.

  • PDF

Hole pattern 형성에 따른 금속/PET sheet의 인장 시 저항변화

  • Choe, Yeong-Jun;Gwon, Na-Hyeon;Jo, Yeong-Rae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.37.1-37.1
    • /
    • 2009
  • 최근 휘어짐이 가능한 flexible display의 개발이 활발히 진행됨에 따라 OLED(organic light emitting diode)의 발전 가능성은 커지고 있다. 하지만 cathode 재료인 Cr, Al등은 tensile 또는 bending에 취약하다. 따라서 본 연구에서는, 인장시험용 아령모형의 PET($125\;{\mu}m$) 필름에 Al, Cr, Cr+Al을 각각 코팅하고 부분적으로 hole을 patterning함으로써 인장 시 미소크랙의 발생을 감소시켜 전기저항(R) 변화를 최소화하는 패턴형상을 design하고 세 가지 금속의 전기저항 변화를 통해 좀 더 우수한 flexible display용 금속을 찾는데 그 목적이 있다. 전극에 형성된 미세패턴의 영향과 패턴 된 hole size에 따른 전기저항의 변화를 알아보기 위해 hole size는 $50\;{\mu}m$, $30\;{\mu}m$, $10\;{\mu}m$로 제작하였고 각각의 금속막에 patterning하였다. 제작된 시편을 인장시험 장치에 설치 후 2mm/min의 속도로 인장응력을 가하면서 Load의 증가에 따른 금속막의 전기저항($\bigtriangleup$R)을 동시동작으로 측정하였다. 실험결과 인장시험 시 저항변화는 Cr이 짧은 시간에 가장 급격하게 변하였으며 다음으로 Cr+Al, Al순 이였다. 또한, hole size의 크기에 따른 전기저항의 변화는 $50\;{\mu}m$ size의 hole을 pattern한 시편이 가장 안정한 저항 변화를 보였다.

  • PDF

Estimation of Shear Wave Velocity of Rockfill Zone by Dynamic Analysis using Micro-earthquake Records (미소지진 계측기록을 활용한 동적응답해석에 의한 댐 사력존 전단파속도 산정)

  • Ha, Ik Soo;Lee, Soo Gwun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.141-152
    • /
    • 2015
  • The objective of this study is to estimate shear wave velocity of rockfill materials by making practical use of the micro-earthquake records which are ordinarily obtained at a domestic rockfill dam and to verify its applicability. Micro-earthquake records were obtained at the site of Heongseong dam and Soyanggang dam, which are the existing multi-purpose dams in Korea. In the previous study, the fundamental periods of each dam were already evaluated by analyzing the response spectrum of the observed records. In this study, numerical analyses varying shear moduli of rockfill zone were carried out using the acceleration histories measured at the abutment as input ground motions. From comparison between the fundamental periods calculated by numerical analyses and measured records, the shear wave velocities with depth were estimated. It is found that the effect of different earthquake events on shear wave velocity estimation for the target dam materials is negligible and the shear wave velocity can be consistently evaluated. Furthermore, comparing the shear wave velocity with the previous researchers' empirical relationships and field test results, applicability of suggested method is verified. Therefore, in case that it is impossible to conduct field tests and estimation is preliminary, the suggested method can be practically used.

A Development of Small-diameter Composite Helical Spring for Reinforcement of Optical Fiber Jumper Cord (OJC) (광점퍼코드 (OJC) 보호용 미소 직경 복합재료 스프링 개발)

  • 윤영기;박성도;이연수;윤희석;이우일
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.17-22
    • /
    • 2002
  • Small diameter composite helical springs (CS) are developed using a hot plated mold for reinforcement of common optical fiber jumper cord (OJC). The outer diameters of the springs are about 2 ~ 3mm. These springs are inserted into the OJC to protect the damage of an optical fiber from the sudden lateral load. Two types of CS, Yarn type (Y-type) and Band type (B-type), are manufactured to compare the effectiveness for the damage protection. The experimental works were conducted to check the effect of the CS covered around OJC on the mechanical and optical properties. Experimental observations show a considerable effect on the flexural resistance, hence slowing down the deterioration of the optical power by the internal damage of the fiber. Obtained main results are as follows: (1) Y-type CS has better protection abilities to lateral loading than B-types. (2) Compared with bare OJC, CS-OJC has less power loss under the loading. (3) OJC covered with the composite coil spring has a possibility for a practical usage with full fruits.

Evaluation of Fatigue Damage of Metal Matrix Composite by LFB Acoustic Microscopy (Line-Focus-Beam 초음파 현미경을 이용한 금속복합재료의 피로손상에 관한 연구)

  • Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.2
    • /
    • pp.40-47
    • /
    • 1993
  • Composites composed of a precipitation harden 2124 alloy matrix reinforced by SiC whiskers, which are fabricated by powder metallugy, are suscepttible to fatigue damage due to the pile-up of moving dislocation and the microcrack initiation along SiC-Al interfaces, especially at the external surfaces of a body. The initial process, such as pile-up of dislocation or microcrack, that corresponds to the stage I during fatigue failure process are too small to be detected and characterized by conventional ultrasonic technique. This paper describes the applicability of an acoustic microscope with Line-Focus-Beam(LFB) lens of 225MHz to evaluate fatigue damage of SiC whiskers reinforced Al alloy. The specimens which were 6.6mm thick, 13mm wide, and 105mm long in the gage section were fatigued in tension-tension under load control. The velocity of leaky surface and leaky pseudosurface acoustic waves are obtained by FFT analysis technique from V(z) curve which is a record of output of piezoelectric transducer. These results are discussed with the change of number of fatigue cycles. The result obtained by acoustic microscope is compared with that by ultrasonic technique generated at 5MHz with conventional surface wave transducers.

  • PDF