대퇴부 거동 해석 및 복합재료 보철물 설계

Behavior Analysis of the Treated Femur and Design of Composite Hip Prosthesis

  • 임종완 (한양대학교 대학원 기계설계학과) ;
  • 하성규 (한양대학교 기계공학과)
  • 발행 : 2002.04.01

초록

무시멘트 인공 고관절 전치환술 후, 복합재료 스템을 갖는 대퇴골의 장기 거동과 인공 대퇴 보철물의 설계 성능을 분석하기 위하여 비선형 유한요소 프로그램이 개발되었다. 한 발로 서 있을 때의 관절 접촉 하중과 근육하중이 적용되었고, 816개의 brick요소를 갖는 타원형 단면의 복합재료 스템으로 치환된 대퇴골이 3차원 유한요소로 모델링 되었다. 프로그램을 사용하여 대퇴골의 밀도 변화, 응력분포, 상대미소운동이 plate cut과 bend mold와 같은 제작 방법에 대한 스템의 적층 각도 변경에 따라서 평가되었다. 결과는 코발트 크롭 합금, 티타늄 합금, 스테인레스 강과 같은 금속 재료보다 AS4/PEEK, T300/976과 같은 복합재료가 적은 골 흡수를 보였다. 대퇴골 보철물의 장기 안정성 증대는 적당한 복합재료의 적층과 적층 각도의 선택에 의하여 얻어질 수 있었다.

The nonlinear finite element program has been developed to analyze the design performance of an artificial hip prosthesis and long term behavior of a treated femur with stems made of composite material after cementless total hip arthroplasty(THA). The authors developed the three dimentional FEM models of femoral bone with designed composite stem which was taken with elliptic cross section of 816 brick elements under hip contact load and muscle farce in simulating single leg stand. Using the program, density changes, stress distributions and micromotions of the material femoral bone were evaluated by changing fiber orientation of stems for selected manufacturing method such as plate cut and bend mold. The results showed that the composite materials such as AS4/PEEK and T300/976 gave less bone resorption than the metallic material such as cobalt chrome alloy, titanium alloy and stainless steal. It was found that increasing the long term stability of the prosthesis in the femur could be obtained by selecting the appropriate ply orientation and stacking sequence of composite.

키워드

참고문헌

  1. Campbell's Operative Orthopaedics. v.1 Arthroplasth of Hip Harkess;J.W;8(eds.)
  2. J.Biomedical Mater Res v.39 Composite Hip prosthesis Design2: Simulation Yildiz;H;F.K.Chang
  3. in Basic Orthopaedic Biomechanics Biomechanics of Artificial Joint Fixation Huiskes;R;V.C.Mow(ed.)W.C.Hayes(ed.)
  4. J.of Biomechanics v.20 Adaptive Bone Remodeling Theory Applied to Prosthetic Design Analysis Huiskes;R;Weinans;H;Grootenboer;H.J.Dalstra;M;Fudala;B;Slooff;T.J.
  5. J.of Biomechanics v.22 Relationship Between Loading History and Femoral Cancellous Bone Architecture Carter;D.R;Orr;T.E;Fyhrie;D.P
  6. Clin.Orthoprel.Res v.135 Mechanical properties and Composition of cortical bone Carter;D.R;Spengler;M.D
  7. Journal of Composite Materials v.31 no.6 Composite Implant for Bone Replacement Kelsey;D.J;Springer;G.S
  8. Dissertation for Degree of Ph.D of Standford University Numerical Simulation of Bone Adaptation to Mechanical Loading Jacobs;C.R
  9. J.of Biomechanics v.34 Hip Contact Forces and Gait Patterns From Foutine activities(Invivo Measurement of Hip Contact Forces Bergmann;G;Deuretzacher;G;Heller;M;Greichen;F;Rohlmann;A;J.M;Duda;G,N
  10. J.of Biomechanics v.34 Musculo_Skeletal Loading Conditions during Walking and Stair Climbing Heller;M.O;Bergmann;G.Deuretzbacher;G;Durselen;L;Pohl;M;Cases;L;Haas;N.P;Duda;G.N
  11. Jounal of Biomechanics v.20 Trabecular Bone Density and Loading History:Regulation of Connection Tissue Biology by Mechanical Energy Carter;D.R;Fyhrie;D.P;Whalen;R.T
  12. Dissertation for Degree of Ph.D of Staford University The Role of Mechanical Stresses in Bone Remodeling Orr;T.E
  13. OrThopaedics Transactions v.13 A Bone Surface Area Controllde Time Dependent Theory for Remodeling Beaupre;G.S;Carter;D.R;Fhyrie;Orr.T.E
  14. Jounal of Biomechanics v.20 Mechanical Loading History and Skeletal Biology Carter;D.R
  15. J.of Biomechamical Engineerings v.106 A Computational Method of Stress Analysis of Adaptive Elastic Materials wth a View toword Application in Strain Induced Remodeling Hart;R.T;Davy;D.T;Heiple;K.G
  16. J.of Biomechanics:Principles and Application Hypothesis Concering the Effect of Implant Rigidity on Adaptive Cortical Bone Remodeling in the Femur Huiskes;R;Dalstra;M;Vander;Venne;R;Grootenboer;H;Sloof;T.J;G.Bergmann(ed.);R,Kolbel(ed.)A.Rohlmann(ed.);Dordrecht(de.)
  17. J.of Biomechanics v.20 Bone Remodeling of Diaphyseal Surface by Torsional Loads:Theoretical Predictions Cowin;S.C
  18. Clinical Orthopaedics v.274 The Relationship Between Stress Shielding and Around Total Hip Stems and The Effects of Flexible Materials Huiskes;R;Weinans;H;Rierbergens;B.Van
  19. McGraw-Hill Book Co v.1 The Finite Element Method Zienkiewicz;O.C;Tayor;R.L(4th Edition)
  20. Journal of the Korean Society for Composite Materials v.12 Structural Analysis and Design of Artificial Hip Joint by Using Finite Element Method Jeong;J.Y;Hwang;W.B;Ha;S.K
  21. J.of Biomechanics v.33 Analysis of a Femoral Hip Prosthesis Designed to Reduced Stress Shielding Joshi;M.G;Advani;S.G.Miller;F;Santare;M.H
  22. J.Biomedical Material Research v.24 Stiffness and Strength Tailoring of a Hip Prosthesis Made of Advanced Composite Materials Chang,F.K;Perez;J;Smith;A
  23. J.Biomecahnics v.16 A Survey of F.E.M.Analysis in Orthopaedic Biomechanics:the First Decade Huiskes;R;Chao;E.Y.S
  24. Clin Ortho.rel.Res no.261 The Various Stress Patterns of Press Fit Ingrown and Cemented Femoral Stems Huiskes;R.
  25. Technomic Publishing Company,Inc Introduction to composite Materials Tsai;S.W;Hahn;H.T
  26. J.of the Korean Orthopadic Association v.31 no.5 Morphological Analysis of a Korean Femaral Femur to Develop Artificial Hip Prosthesis For Korean Kim;Y.M;Lee;S.C;Kim;H.J;Kim;M.H;Kang;S.B
  27. J.of Biomechanical Engineering v.119 The Predictive Value of Stress Shielding for Quantification of Adaptive Bone Resorption Around Hip Replacements Kuiper;J.H;R.Huskes
  28. J.of Biomechanics v.25 The Effect of Specimen Geometry on the Mechanical Bahavior of Trabecular Bone Specimens Linde;F;Hvid;I;Madsen;F
  29. Clin Orthop.rel.Res v.208 Observations on Effect of Movenment on Bone Ingrowth into Poros Surfaced Implants Pilliarl;R.M;Lee;J.M;Manitopolous C
  30. Think Composites Dayton Composite Design 4 Tsai;S.W