• Title/Summary/Keyword: 미세다공층

Search Result 50, Processing Time 0.019 seconds

Hydrogen Storage Technology by Using Porous Carbon Materials (다공성 탄소계 재료를 이용한 수소저장 기술)

  • Lee, Young Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.465-472
    • /
    • 2009
  • The technologies for improving the capacity of hydrogen storage were investigated and the recent data of hydrogen storage by using various porous carbon materials were summarized. As the media of hydrogen storage, activated carbon, carbon nanotube, expanded graphite and activated carbon fiber were mainly investigated. The hydrogen storage in the carbon materials increased with controlled pore size about 0.6~0.7 nm. In case of catalyst, transition metal and their metal oxide were mainly applied on the surface of carbon materials by doping. Activated carbon is relatively cheap because of its production on a large scale. Carbon nanotube has a space inside and outside of tube for hydrogen storage. In case of graphite, the distance between layers can be extended by intercalation of alkali metals providing the space for hydrogen adsorption. Activated carbon fiber has the high specific surface area and micro pore volume which are useful for hydrogen storage. Above consideration of research, porous carbon materials still can be one of the promising materials for reaching the DOE target of hydrogen storage.

Characterization of PEMFC Electrode Structures by Complex Capacitance Analysis of EIS (임피던스 복소캐패시턴스법에 의한 PEMFC 전극 구조 분석)

  • Jang, Jong-Hyun;Son, Ji-Hwan;Kim, Hyoung-Juhn;Han, Jong-Hee;Lim, Tae-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.213-216
    • /
    • 2007
  • PEMFC의 전기화학적 반응은 촉매, 이오노머, 기공이 만나는 삼상계면에서만 일어나므로, 전극 구조의 최적화가 성능 향상 및 장기안정성 확보에 있어 매우 중요하다. 본 연구에서는 전극 미세구조를 실시간으로 분석하기 위해 임피던스 복소캐패시턴스법을 도입하고자 하였다. 즉, PEMFC의 양극에 질소를 공급하면 0.4 V 부근에서 전기이중층 형성 반응만이 일어나는 것을 확인하였으며, 이때 음극에는 수소를 공급하여 기준전극 및 반대전극으로 사용하였다. 측정된 임피던스를 복소캐패시턴스로 변환하고 허수부를 주파수에 대해 도시하면 피크 형태의 곡선이 얻어지는데, (1) 피크 면적은 전극/전해질의 계면면적, (2) 피크 위치는 이오노머 네트워크에 의한 수소이온 전도 특성, (3) 피크 폭은 다공성 구조의 균일도를 각각 나타내므로, 피팅 없이 직접적인 해석이 가능하다는 장점을 가진다. 반면, 기존의 Nyquist 도시법은 피팅에 의한 분석이 필요하며, 전극층의 불균일한 구조로 인해 단순한 등가회로 구성이 어려운 문제점을 가진다. 최종적으로, MEA 제작 조건 및 운전 조건을 변수로 하여 임피던스를 측정하고 복소캐패시턴스 분석을 수행하여, 퇴화 경로를 규명하고 운전 조건을 최적화하고자 하였다.

  • PDF

Model prediction of crosslinked chitosan composite membrane for pervaporation of water-ethanol mixtures

  • 박호범;남상용;이영무
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.65-66
    • /
    • 1996
  • 투과증발법은 상부에 액체공급액이 반투과막과 접촉하고 있고 하부에 진공에 가까운 낮은 압력을 걸어줌으로써 투과물이 수증기로 제거되는 막공정의 하나이다. 막을 통한 분리는 혼합물의 각 성분이 막내에서 다른 용해도와 확산도를 가지고 있기 때문에 발생한다. 이 공정의 지배적인 전달 메카니즘은 용해-확산 모델을 기초로 하고 있기 때문에 전형적으로 투과증발막은 대개 미세다공성 지지체에 얇은 선택성을 가진 재료를 입힌 복합막을 사용한다. 본 연구의 목적은 선택성을 가진 상부층막이 키토산인 복합막에서 지지체 구조의 영향을 살펴보고 키토산 복합막에 대한 물-에탄올 분리에 대해 최적의 모델을 찾는 것이다. 투과증발막소재로서의 키토산은 친수성기를 가지고 있으므로 물과 알코올의 분리에서 물만을 선택적으로 흡수하여 투과시키는 우수한 성능을 지니고 있으나 더욱 효과적인 막성능을 발휘하기 위해서는 지지체의 역할 및 막성능에 영향을 끼치는 여러 가지 인자들을 고려해서 막을 설계하는 것이 필요하다. 여기서는 상부층의 막두께, 지지체의 특성, 피드 농도 등을 변화시켜 가장 적당한 모델을 예측하였다.

  • PDF

Fabrication of Environmental-friendly Materials Using Atomic Layer Deposition (원자층 증착을 이용한 친환경 소재의 제조)

  • Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this article, I will introduce recent developments of environmental-friendly materials fabricated using atomic layer deposition (ALD). Advantages of ALD include fine control of the thin film thickness and formation of a homogeneous thin fim on complex-structured three-dimensional substrates. Such advantages of ALD can be exploited for fabricating environmental-friendly materials. Porous membranes such as anodic aluminum oxide (AAO) can be used as a substrate for $TiO_2$ coating with a thickness of about 10 nm, and the $TiO_2$-coated AAO can be used as filter of volatile organic compound such as toluene. The unique structural property of AAO in combination with a high adsorption capacity of amorphous $TiO_2$ can be exploited in this case. $TiO_2$ can be also deposited on nanodiamonds and Ni powder, which can be used as photocatalyst for degradation of toluene, and $CO_2$ reforming of methane catalyst, respectively. One can produce structures, in which the substrates are only partially covered by $TiO_2$ domains, and these structures turns out to be catalytically more active than bare substrates, or complete core-shell structures. We show that the ALD can be widely used not only in the semiconductor industry, but also environmental science.

Properties of the carbon electrode perovskite solar cells with various annealing processes (열처리 방법에 따른 카본전극 페로브스카이트 태양전지의 특성 변화)

  • Song, Ohsung;Kim, Kwangbea
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.26-32
    • /
    • 2021
  • The photovoltaic properties and microstructure changes were observed while perovskite solar cells (PSCs) with a fabricated carbon electrode were formed using the following annealing processes: hot-plate, oven, and rapid thermal annealing (RTA). Perovskite solar cells with a glass/FTO/compact TiO2/meso TiO2/meso ZrO2/carbon structure were prepared. The photovoltaic properties and microstructure changes in the PSCs were analyzed using a solar simulator, optical microscopy, and field emission scanning electron microscopy. An analysis of the photovoltaic properties revealed outstanding properties when RTA was applied to the cells. Microstructure analysis showed that perovskite was formed locally on the carbon electrode surface when hot-plate and oven annealing were applied. On the other hand, PSC with RTA showed a flat surface without extra perovskite agglomeration. Denser perovskite formed on the porous carbon electrode layer with RTA showed superior photovoltaic properties. These results suggest that the RTA process might be appropriate for the massive production of carbon electrode PSCs considering the processing time.

Effect of Forming Process and Particle Size on Properties of Porous Silicon Carbide Ceramic Candle Filters (성형공정(成形工程)과 원료입도(原料粒度)가 다공성(多孔性) 탄화규소(炭火硅素) 세라믹 캔들 필터 특성(特性)에 미치는 영향(影響))

  • Han, In-Sub;Seo, Doo-Won;Hong, Ki-Seog;Woo, Sang-Kuk
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.31-43
    • /
    • 2010
  • To fabricate porous SiC candle filter for filtration facility of the IGCC system, the candle type filter preforms were fabricated by ramming and vacuum extrusion process. A commercially available ${\alpha}$-SiC powders with various particle size were used as starting raw materials, and $44\;{\mu}m$ mullite, $CaCO_3$ powder were used as non-clay based inorganic sintering additive. The candle typed preforms by ramming process and vacuum extrusion were sintered at $1400^{\circ}C$ for 2h in air atmosphere. The effect of forming method and particle size of filter matrix on porosity, density, strength (flexural and compressive strength) and microstructure of the sintered porous SiC candle tilters were investigated. The sintered porous SiC filters which were fabricated by ramming process have more higher density and strength than extruded filter in same particle size of the matrix, and its maximum density and 3-point bending strength were $2.00\;g/cm^3$ and 45 MPa, respectively. Also, corrosion test of the sintered candle filter specimens by different forming method was performed at $600^{\circ}C$ for 2400h using IGCC syngas atmosphere for estimation of long-term reliability of the candle filter matrix.

Complex Capacitance Analysis of Impedance Data and its Applications (임피던스 복소캐패시턴스 분석법의 이론 및 응용)

  • Jang, Jong-Hyun;Oh, Seung-Mo
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.223-234
    • /
    • 2010
  • In this review, the theory and applications of the complex capacitance analysis, which can be utilized in analyzing capacitor-like electrochemical systems, were summarized. Theoretically, it was suggested that the imaginary capacitance plots (Cim vs. log f) can provide a simple way to analyze electrochemical characteristics of capacitive systems, without complicated mathematical calculations. The usefulness of the complex capacitance analysis has been demonstrated by applying it to analyze EDLC characteristics of practical porous carbon electrodes, ionic conductivities inside small pores, and ionic resistances in the catalyst layers of polymer electrolyte membrane fuel cells.

Gas Transport Behavior of Polydopamine-Coated Composite Membranes (폴리도파민/미세다공성 복합막의 기체투과특성)

  • Kim, Hyo Won;Park, Ho Bum
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • Recently, a novel coating method using an aqueous doapmine solution was proposed, the deposited coating was found to have extraordinarily strong-adhesion to numerous materials such as metal and polymers. However, it has suffered from many controversy in scientific fields due to its final structure and deposited mechanisms. Here, we have proposed a new structure for final dopamine product coupling with solid state spectroscopic, thermal behavior, and gas transport behaviors of dopamine coated microporous polyethersulfone membranes. In its final analysis, the results represented that it is a supramolecular aggregated of monomers consisting of 5,6-dihydroxyindoline and its derivative in contrast to previously proposed polymeric structure.

Structuyal and physical properties of thin copper films deposited on porous silicon (다공성 실리콘위에 증착된 Cu 박막의 구조적 물리적 특성)

  • 홍광표;권덕렬;박현아;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.123-129
    • /
    • 2003
  • Thin transparent Cu films in the thickness range of 10 ~ 40 nm are deposited by rf-magnetron sputtering on porous silicon (PS) anodized on p-type silicon in dark. Microstructural features of the Cu films are investigated using SEM, AFM and XRD techniques. The RMS roughness of the Cu films is found to be around 1.47 nm and the grain growth is columnar with a (111) preferred orientation and follows the Volmer-Weber mode. The photoluminescence studies showed that a broad luminiscence peak of PS near the blue-green region gets blue shifted (~0.05 eV) with a small reduction in intensity and therefore, Cu-related PL quenching is absent. The FTIR absorption spectra on the PS/Cu structure revealed no major change of the native PS peaks but only a reduction in the relative intensity. The I-V characteristic curves further establish the Schottky nature of the diode with an ideality factor of 2.77 and a barrier height of 0.678 eV. An electroluminiscence (EL) signal of small intensity could be detected for the above diode.

SEM/EDS Evaluation of Gold Bonding Agent Applied on Non-precious Alloys and Cast CP-Ti (도재 소부용 비귀금속 합금과 티타늄에 적용한 Gold Bonding Agent의 전자현미경적 평가)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of dental hygiene science
    • /
    • v.9 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • The purposed of this study was to investigate the effect of Gold bonding agent as intermediate layer between metal substrate and ceramic coating. Gold bonding agent used to seal off any surface porosity, to mask the greyish color of the metal, and to provide an underlying bright golden hue to the ceramic coverage. The adhesion between metal substrate and ceramic is related to diffusion of oxygen during ceramic firing. The oxide layer produced on non-precious alloy anti titanium was considered to have a potentially adverse effect on metal-ceramic bonding. The oxidation characteristics of titanium and non-precious alloys are the main problem. Every group were divided into test and control groups. Control groups are carried out process of degassing for product oxide layer. Au coating was applied on each Ni-Cr, Co-Cr alloys and cp-Ti specimens with difference surface condition or degassing. Specimens surfaces and cutting plane was characterized by SEM/EDS. Results suggested that Au coating is effective barriers to protect metal oxidation during ceramic firing.

  • PDF