다공성 실리콘위에 증착된 Cu 박막의 구조적 물리적 특성

Structuyal and physical properties of thin copper films deposited on porous silicon

  • 발행 : 2003.06.01

초록

다공질 실리콘(PS)기판 위에 rf-스퍼터링법으로 10~40 nm의 두께의 반 투과성 구리박막을 증착하였다. PS는 p형 (100) 실리콘 웨이퍼를 기판으로 50㎃/$\textrm{cm}^2$의 전류밀도를 사용하여 전해 에칭법으로 양극 산화하여 제작하였다. PS층과 Cu박막의 미세구조를 분석하기 위하여 SEM, AFM 그리고 XRD 분석을 시행하였다. AFM 분석결과 Cu 박막의 RMS roughness 값은 약 1.47nm로 Volmer-Weber 유형의 결정립 성장을 보였으며, 결정립의 성장은 (111) 배향성을 나타냈다. PS층의 PL 스펙트럼은 blue green 영역에서 관찰되었고, Cu 박막 증착 후 0.05eV의 blue shift가 나타났으며, 약간의 강도저하를 보였다. PS/Cu접합구조의 FTIR스펙트럼은 주 피크변화는 없으나 전반적인 강도의 감소를 보였다. I-V 특성곡선으로 본 PS/Cu 접합구조는 ideality factor가 2.77이고 barrier의 높이가 0.678eV인 Schottky 유형의 다이오드 특성을 보였다. PS/Cu 접합구조로 만든 다이오드 제조로 EL특성을 관찰할 수 있었다.

Thin transparent Cu films in the thickness range of 10 ~ 40 nm are deposited by rf-magnetron sputtering on porous silicon (PS) anodized on p-type silicon in dark. Microstructural features of the Cu films are investigated using SEM, AFM and XRD techniques. The RMS roughness of the Cu films is found to be around 1.47 nm and the grain growth is columnar with a (111) preferred orientation and follows the Volmer-Weber mode. The photoluminescence studies showed that a broad luminiscence peak of PS near the blue-green region gets blue shifted (~0.05 eV) with a small reduction in intensity and therefore, Cu-related PL quenching is absent. The FTIR absorption spectra on the PS/Cu structure revealed no major change of the native PS peaks but only a reduction in the relative intensity. The I-V characteristic curves further establish the Schottky nature of the diode with an ideality factor of 2.77 and a barrier height of 0.678 eV. An electroluminiscence (EL) signal of small intensity could be detected for the above diode.

키워드

참고문헌

  1. Surf. And Coatings Tech. v.138 J.R.Shi;S.P.Lau;Z.Sun;X.Shi;B.K.Tay;H.S.Tan https://doi.org/10.1016/S0257-8972(00)01159-2
  2. Appl. Phys. Lett. v.57 L.T.Canham https://doi.org/10.1063/1.103561
  3. Surf. Sci. Reports v.38 O.Bisi;S.Ossicini;L.Pavesi https://doi.org/10.1016/S0167-5729(99)00012-6
  4. Appl. Phys. Lett. v.74 M.Balucani;V.Bondarenko;L.Franschina;G.Lamedica;V.A.Yakovseva;A.Ferrari https://doi.org/10.1063/1.123741
  5. Thin Solid Films v.276 S.Lazarouk;V.Bondarenko;S. La Monica;G.Maiello;G.Masini;P.Pershukevich;A.Ferrari https://doi.org/10.1016/0040-6090(95)08101-1
  6. Appl. Phys. Lett. v.74 K.Ueno;N.Koshida https://doi.org/10.1063/1.122962
  7. J. Appl. Phys. v.91 L.Seals;J.L.Gole;L.A.Tse;P.J.hesketh https://doi.org/10.1063/1.1436556
  8. Appl. Phys. Lett. v.67 D.Stievenard;D.Deresmes https://doi.org/10.1063/1.114942
  9. Thin Solid Films v.255 M.Jeske;J.W.Schultze;M.Thonissen;H.Munder https://doi.org/10.1016/0040-6090(94)05605-D
  10. Thin Solid Films v.276 F.Ronkel;J.W.Schultze;R. Arens-Fischer https://doi.org/10.1016/0040-6090(95)08045-7
  11. Appl. Phys. Lett. v.73 B.Gelloz;T.Nakagawa;N.Koshida https://doi.org/10.1063/1.122355
  12. Appl. Phys. Lett. v.68 S.Dhar;S.Chakraborty https://doi.org/10.1063/1.116090
  13. Appl. Phys. Lett. v.67 V.Jasutis;I.Simkiene;A.Krotkus https://doi.org/10.1063/1.114390
  14. Appl. Phys. Lett. v.74 Z.Yamani;A.Alaql;J.Therrien;O.Nayfeh;M.Nayfeh https://doi.org/10.1063/1.124135
  15. J. Appl. phys. v.86 R.J. Martin-Palma;J. Perez-Rigueiro;J.M. Martinez-Duart https://doi.org/10.1063/1.371772
  16. Thin Solid Films v.276 A.Diligenti;A.Nannini;G.Penneli;V.Pellegrini;F.Fuso;M.Allegrimi https://doi.org/10.1016/0040-6090(95)08086-4
  17. J. Porous Mater v.7 T.P.Nguyen;P. Le Rendu;V.H.Tran;V.Parkhutik;R.F.Esteve https://doi.org/10.1023/A:1009651408083
  18. Appl. Phys. Lett. v.69 N.Rigakis;Z.Yamani;L.H.AbuHassan;J.Hillard;M.H.Nayfeh https://doi.org/10.1063/1.117170
  19. Appl. Phys. Lett. v.69 Y.M.Huang https://doi.org/10.1063/1.117341
  20. Phys. Stat. Solidi B v.190 J.Kocka;A.Fejfar;I.Pelant https://doi.org/10.1002/pssb.2221900105
  21. Surf. Sci. v.336 Ikeda;Y.Kawashima;H.Itoh;T.Ichinokawa https://doi.org/10.1016/0039-6028(95)00400-9
  22. J. Cryst. Growth v.226 J.Zhang;K.Xu;V.Ji https://doi.org/10.1016/S0022-0248(01)01376-8
  23. J. Cryst. Growth v.68 TK.Barla;G.Bomchil;R.Herino;J.C.Pfister;J.Baruchel https://doi.org/10.1016/0022-0248(84)90110-6
  24. Materials Letters v.51 W.Gao;H.Gong;J.He;A.Thomas;L.Chan;S.Li https://doi.org/10.1016/S0167-577X(01)00268-3
  25. Mat. Sci. And Eng. A v.288 N.Benouattas;A.Mosse;A.Bouabellou https://doi.org/10.1016/S0921-5093(00)00854-6
  26. Thin Solid Films v.384 H.D.Liu;Y.P.Zhao;G.Ramnath;S.P.Murarka;G.C.Wang https://doi.org/10.1016/S0040-6090(00)01818-6
  27. Cryst. Solids v.220 A.Edgar;J.Non https://doi.org/10.1016/S0022-3093(97)00217-2
  28. Properties of Porous Silicon A.Halimaoui;L.T.Canham(ed.)