Browse > Article

Fabrication of Environmental-friendly Materials Using Atomic Layer Deposition  

Kim, Young Dok (Department of Chemistry, Sungkyunkwan University)
Publication Information
Applied Chemistry for Engineering / v.23, no.1, 2012 , pp. 1-7 More about this Journal
Abstract
In this article, I will introduce recent developments of environmental-friendly materials fabricated using atomic layer deposition (ALD). Advantages of ALD include fine control of the thin film thickness and formation of a homogeneous thin fim on complex-structured three-dimensional substrates. Such advantages of ALD can be exploited for fabricating environmental-friendly materials. Porous membranes such as anodic aluminum oxide (AAO) can be used as a substrate for $TiO_2$ coating with a thickness of about 10 nm, and the $TiO_2$-coated AAO can be used as filter of volatile organic compound such as toluene. The unique structural property of AAO in combination with a high adsorption capacity of amorphous $TiO_2$ can be exploited in this case. $TiO_2$ can be also deposited on nanodiamonds and Ni powder, which can be used as photocatalyst for degradation of toluene, and $CO_2$ reforming of methane catalyst, respectively. One can produce structures, in which the substrates are only partially covered by $TiO_2$ domains, and these structures turns out to be catalytically more active than bare substrates, or complete core-shell structures. We show that the ALD can be widely used not only in the semiconductor industry, but also environmental science.
Keywords
atomic layer deposition; volatile organic compound; adsorption; catalysis; $TiO_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. M. King, X. Liang, Y. Zhou, C. S. Carney, L. F. Hakim, P. Li, and A. W. Weimer, Powder Technol., 183, 356 (2008).   DOI
2 X. Jiang, T. N. Gur, F. B. Prinz, and S. F. Bent, Chem. Mater., 22, 3024 (2010).   DOI
3 S. M. George, Chem. Rev., 110, 111 (2010).   DOI
4 R. L. Puurunen, M. Lindblad, A. Root, and A. O. I. Krause, Phys. Chem. Chem. Phys., 3, 1093 (2001).   DOI
5 D. S. Bhatkhande, V. G. Pangarkar, and A. Beenackers, J. Chem. Technol. Biotechnol., 77, 102 (2002).   DOI
6 S. Mudliar, B. Giri, K. Padoley, D. Satpute, R. Dixit, P. Bhatt, R. Pandey, A. Juwarkar, and A. Vaidya, J. Environ. Manage., 91, 1039 (2011).
7 G. Busca, S. Berardinelli, C. Resini, and L. Arrighi, J. Hazard. Mater., 160, 265 (2008).   DOI
8 J. Nikiema, P.-A. Dastous, and M. Heitz, Rev. Environ. Health, 22, 273 (2007).   DOI
9 H. J. Lee, H. O. Seo, D. W. Kim, K.-D. Kim, L. Yuan, D. C. Lim, H. K. Ju, J. W. Kim, J. Lee, and Y. D. Kim, Chem. Comm., 47, 5605 (2011).   DOI
10 K.-D. Kim, N. K. Dey, H. O. Seo, Y. D. Kim, D. Lim, and M. Lee, Appl. Cataly. A., 408, 148 (2011).   DOI
11 D. W. Kim, K.-D. Kim, H. O. Seo, N. K. Dey, M. J. Kim, Y. D. Kim, D. C. Lim, and K. H. Lee, Catal. Lett., 141, 854 (2011).   DOI
12 H. Masuda and K. Fukuda, Science, 268, 1466 (1995).   DOI
13 X. B. Chen, L. Liu, P. Y. Yu, and S. S. Mao, Science, 331, 746 (2011).   DOI
14 X. B. Chen and S. S. Mao, Chem. Rev., 107, 2891 (2007).   DOI
15 R. Mendez-Roman and N. Cardona-Martinez, Catal. Today, 40, 353 (1998).   DOI
16 G. Marci, M. Addamo, V. Augugliaro, S. Coluccia, E. Garcia-Lopez, V. Loddo, G. Martra, L. Palmisano, and M. Schiavello, J. Photochem. Photobiol. A Chem., 160, 105 (2003).   DOI
17 L. Cao, Z. Gao, S. L. Suib, T. N. Obee, S. O. Hay, and J. D. Freihaut, J. Catal., 196, 253 (2000).   DOI
18 F.-L. Cao, J.-G. Wang, F.-J. Lv, D.-Q. Zhang, Y.-N. Huo, G.-S. Li, H.-X. Li, and J. Zhu, Catal. Commun., 12, 946 (2011).   DOI
19 J. R. H. Ross, Catal. Today, 100, 151 (2005).   DOI