Browse > Article
http://dx.doi.org/10.5229/JKES.2010.13.4.223

Complex Capacitance Analysis of Impedance Data and its Applications  

Jang, Jong-Hyun (Fuel Cell Center, Korea Institute of Science and Technology)
Oh, Seung-Mo (Research Center for Energy Conversion & Storage, School of Chemical and Biological Engineering, Seoul National University)
Publication Information
Journal of the Korean Electrochemical Society / v.13, no.4, 2010 , pp. 223-234 More about this Journal
Abstract
In this review, the theory and applications of the complex capacitance analysis, which can be utilized in analyzing capacitor-like electrochemical systems, were summarized. Theoretically, it was suggested that the imaginary capacitance plots (Cim vs. log f) can provide a simple way to analyze electrochemical characteristics of capacitive systems, without complicated mathematical calculations. The usefulness of the complex capacitance analysis has been demonstrated by applying it to analyze EDLC characteristics of practical porous carbon electrodes, ionic conductivities inside small pores, and ionic resistances in the catalyst layers of polymer electrolyte membrane fuel cells.
Keywords
Porous electrode; Electrochemical impedance spectroscopy (EIS); Complex capacitance analysis; Electric double-layer capacitor (EDLC); Polymer electrolyte membrane fuel cell (PEMFC);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J.-P. Randin and E. Yeager, 'Differential capacitance study on the basal plane of stress-annealed pyrolytic graphite', J. Electroanal. Chem., 36, 257 (1972).   DOI
2 J.-P. Randin and E. Yeager, 'Differential capacitance study on the edge orientation of pyrolytic graphite and glassy carbon electrodes', J. Electroanal. Chem., 58, 313 (1975).   DOI
3 K. Kinoshita, "Carbon: Electrochemical and Physicochemical Properties", John Wiley & Sons, New York (1988).
4 B. E. Conway, "Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications", Kluwer Academic / Plenum Publishers, New York (1999).
5 E. Barsoukov and J. R. Macdonald, "Impedance Spectroscopy: Theory, Experiment, and Applications", 2 ed., Wiley-Interscience (2005).
6 M. E. Orazem, "Electrochemical Impedance Spectroscopy", Wiley-Interscience (2008).
7 X.-Z. Yuan, C. Song, H. Wang, and J. Zhang, "Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications", Springer (2009).
8 S. Yoon, J. H. Jang, B. H. Ka, and S. M. Oh, 'Complex capacitance analysis on rate capability of electric-double layer capacitor (EDLC) electrodes of different thickness', Electrochim. Acta, 50, 2255 (2005).   DOI
9 J. H. Jang, S. Yoon, B. H. Ka, Y. H. Jung, and S. M. Oh, 'Complex capacitance analysis on leakage current appearing in electric double-layer capacitor carbon electrode', J. Electrochem. Soc., 152, A1418 (2005).   DOI
10 J. H. Jang and S. M. Oh, 'Complex capacitance analysis of porous carbon electrodes for electric double-layer capacitors', J. Electrochem. Soc., 151, A571 (2004).   DOI
11 C. Hitz and A. Lasia, 'Experimental study and modeling of impedance of the her on porous Ni electrodes', J. Electroanal. Chem., 500, 213 (2001).   DOI
12 J.-P. Candy, P. Fouilloux, M. Keddam, and H. Takenouti, 'The pore texture of raney-nickel determined by impedance measurements', Electrochim. Acta, 27, 1585 (1982).   DOI
13 T. E. Springer, M. S. Wilson, and S. Gottesfeld, 'Modeling and experimental diagnostics in polymer electrolyte fuel cells', J. Electrochem. Soc., 140, 3513 (1993).   DOI
14 G.-J. Lee, S.-I. Pyun, and C.-H. Kim, 'Kinetics of doublelayer charging/discharging of the activated carbon fiber cloth electrode: effects of pore length distribution and solution resistance', J. Solid State Electrochem., 8, 110 (2004).   DOI
15 J. Koresh and A. Soffer, 'Double layer capacitance and charging rate of ultramicroporous carbon electrodes', J. Electrochem. Soc., 124, 1379 (1977).   DOI
16 W. Y. Lo, K. Y. Chan, and K. L. Mok, 'Molecular dynamics simulation of ions in charged capillaries', J. Phys.: Condens. Matter, 6, A145 (1994).   DOI
17 W. Y. Lo, K. Y. Chan, M. Lee, and K. L. Mok, 'Molecular simulation of electrolytes in nanapores', J. Electroanal. Chem., 450, 265 (1998).   DOI
18 H. K. Song, J. H. Jang, J. J. Kim, and S. M. Oh, 'Electrochemical porosimetry: Deconvolution of distribution functions', Electrochem. Comm, 8, 1191 (2006).   DOI
19 J. H. Jang, 'Complex capacitance analysis on porous carbon electrodes for electric double-layer capacitors', Ph. D. Dissertation, Seoul National Univ., Seoul, Korea (2004).
20 R. de Levie, 1967. Electrochemical response of porous and rough electrodes, in: Delahay, P. (Ed.), Advances in Electrochemistry and Electrochemical Engineering. John Wiley & Sons, New York, pp. 329.
21 R. de Levie, 'On porous electrodes in electrolyte solutions-IV', Electrochim. Acta, 9, 1231 (1964).   DOI
22 R. de Levie, 'On porous electrodes in electrolyte solutions', Electrochim. Acta, 8, 751 (1963).
23 J. Lee, S. Yoon, T. Hyeon, S. M. Oh, and K. B. Kim, 'Synthesis of a new mesoporous carbon and its application to electrochemical double layer capacitors', Chem. Commun., 21, 2177 (1999).
24 M. Ue, 'Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and g-butyrolactone', J. Electrochem. Soc., 141, 3336 (1994).   DOI
25 J. H. Jang, S. Jeon, J. H. Cho, S.-K. Kim, S.-Y. Lee, E. Cho, H.-J. Kim, J. Han, and T.-H. Lim, 'Complex Capacitance Analysis of Ionic Resistance and Interfacial Capacitance in PEMFC and DMFC Catalyst Layers', J. Electrochem. Soc, 156, B1293 (2009).   DOI
26 H.-K. Song, J.-H. Sung, Y.-H. Jung, K.-H. Lee, L. H. Dao, M.-H. Kim, and H.-N. Kim, 'Electrochemical Porosimetry', J. Electrochem. Soc, 151, E102 (2004).   DOI
27 J. Lee, S. Yoon, S. M. Oh, and T. Hyeon, 'Development of a new mesoporous carbon through HMS-aluminosilicate template', Adv. Mater., 12, 359 (2000).   DOI
28 S. Yoon, J. Lee, T. Hyeon, and S. M. Oh, 'Electric doublelayer capacitor performance of a new mesoporous carbon', J. Electrochem. Soc., 147, 2507 (2000).   DOI
29 K. Jurewicz, C. Vix-Guterl, E. Frackowiakb, S. Saadallaha, M. Redaa, J. Parmentierc, J. Patarinc, and F. Béguind, 'Capacitance properties of ordered porous carbon materials prepared by a templating procedure', J. Phys. Chem. Solids, 65, 287 (2004).   DOI   ScienceOn
30 R. Kotz and M. Carlen, 'Principles and application sof electrochemical capacitors', Electrochim. Acta, 45, 2483 (2000).   DOI
31 O. Lanzi and U. Landau, 'Effect of pore structure on current and potential distributions in a porous electrode', J. Electrochem. Soc., 137, 585 (1990).   DOI
32 J. H. Jang, S. Yoon, B. H. Ka, and S. M. Oh, 'Potentialdependent complex capacitance analysis for porous carbon electrodes', J. Kor. Electrochem. Soc., 6, 255 (2003).   DOI
33 J. R. Macdonald, "Impedance Spectroscopy: Emphasizing Solid Materials and Systems", John Wiley & Sons, New York (1987).
34 V. Srinivasan and J. W. Weidner, 'Mathematical modeling of electrochemical capacitors', J. Electrochem. Soc., 146, 1650 (1999).   DOI
35 S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, and O. Terasaki, 'Synthesis of new nanoporous carbon with hexagonally ordered mesostructure', J. Am. Chem. Soc., 122, 10712 (2000).   DOI
36 A. Lasia, 'Impedance of porous electrodes', J. Electroanal. Chem., 397, 27 (1995).   DOI
37 R. K. Shrvedani and A. Lasia, 'Kinetics of hydrogen evolution reaction on nickel-zinc-phosphorous electrodes', J. Electrochem. Soc., 144, 2652 (1997).   DOI
38 R. de Levie, 'Advances in Electrochemistry and Electrochemical Engineering', in: Delahay, P. (Ed.). John Wiley & Sons, New York, p.329 (1967).
39 H.-K. Song, H.-Y. Hwang, K.-H. Lee, and L. H. Dao, 'The effect of pore size distribution on the frequency dispersion of porous electrodes', Electrochim. Acta, 45, 2241 (2000).   DOI
40 H.-K. Song, Y.-H. Jung, K.-H. Lee, and L. H. Dao, 'Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution', Electrochim. Acta, 44, 3513 (1999).   DOI
41 W. L. Briggs and V. E. Henson, "The DFT: An Owner's Manual for the Discrete Fourier Transform, the Society for Industrial and Applied Mathematics", Philadelphia (1995).
42 E. O. Brigham, "The Fast Fourier Transform and its Applications", Prentice Hall, New Jersey (1988).
43 H. Shi, 'Activated carbons and double layer capacitance', Electrochim. Acta, 41, 1633 (1996).   DOI