DOI QR코드

DOI QR Code

Complex Capacitance Analysis of Impedance Data and its Applications

임피던스 복소캐패시턴스 분석법의 이론 및 응용

  • Jang, Jong-Hyun (Fuel Cell Center, Korea Institute of Science and Technology) ;
  • Oh, Seung-Mo (Research Center for Energy Conversion & Storage, School of Chemical and Biological Engineering, Seoul National University)
  • 장종현 (한국과학기술연구원 연료전지센터) ;
  • 오승모 (서울대학교 공과대학 화학생물공학부 에너지변환.저장연구센터)
  • Received : 2010.10.20
  • Accepted : 2010.10.26
  • Published : 2010.11.30

Abstract

In this review, the theory and applications of the complex capacitance analysis, which can be utilized in analyzing capacitor-like electrochemical systems, were summarized. Theoretically, it was suggested that the imaginary capacitance plots (Cim vs. log f) can provide a simple way to analyze electrochemical characteristics of capacitive systems, without complicated mathematical calculations. The usefulness of the complex capacitance analysis has been demonstrated by applying it to analyze EDLC characteristics of practical porous carbon electrodes, ionic conductivities inside small pores, and ionic resistances in the catalyst layers of polymer electrolyte membrane fuel cells.

본 총설에서는 캐패시터적인 특성을 가지는 다공성 전극의 전기화학특성 분석에 활용되는 임피던스의 복소캐패시턴스 분석법(complex capacitance analysis)의 이론 및 응용에 대해 정리하였다. 이론적으로 캐패시터적인 특성을 갖는 전기화학시스템에 대해 캐패시턴스허수부 도시를 활용하면 효과적인 해석이 가능함이 제시되었다. 또한, 복소캐패시턴스 분석법은 다공성 탄소 재료/전극의 EDLC 특성, 미세기공 내부의 이온전도 특성, 고분자전해질연료전지의 촉매층 이온저항 등의 분석에 효과적으로 적용될 수 있음이 검증되었다.

Keywords

References

  1. J. R. Macdonald, "Impedance Spectroscopy: Emphasizing Solid Materials and Systems", John Wiley & Sons, New York (1987).
  2. E. Barsoukov and J. R. Macdonald, "Impedance Spectroscopy: Theory, Experiment, and Applications", 2 ed., Wiley-Interscience (2005).
  3. M. E. Orazem, "Electrochemical Impedance Spectroscopy", Wiley-Interscience (2008).
  4. X.-Z. Yuan, C. Song, H. Wang, and J. Zhang, "Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications", Springer (2009).
  5. S. Yoon, J. H. Jang, B. H. Ka, and S. M. Oh, 'Complex capacitance analysis on rate capability of electric-double layer capacitor (EDLC) electrodes of different thickness', Electrochim. Acta, 50, 2255 (2005). https://doi.org/10.1016/j.electacta.2004.10.009
  6. J. H. Jang, S. Yoon, B. H. Ka, Y. H. Jung, and S. M. Oh, 'Complex capacitance analysis on leakage current appearing in electric double-layer capacitor carbon electrode', J. Electrochem. Soc., 152, A1418 (2005). https://doi.org/10.1149/1.1931469
  7. J. H. Jang and S. M. Oh, 'Complex capacitance analysis of porous carbon electrodes for electric double-layer capacitors', J. Electrochem. Soc., 151, A571 (2004). https://doi.org/10.1149/1.1647572
  8. H. K. Song, J. H. Jang, J. J. Kim, and S. M. Oh, 'Electrochemical porosimetry: Deconvolution of distribution functions', Electrochem. Comm, 8, 1191 (2006). https://doi.org/10.1016/j.elecom.2006.05.012
  9. J. H. Jang, 'Complex capacitance analysis on porous carbon electrodes for electric double-layer capacitors', Ph. D. Dissertation, Seoul National Univ., Seoul, Korea (2004).
  10. R. de Levie, 1967. Electrochemical response of porous and rough electrodes, in: Delahay, P. (Ed.), Advances in Electrochemistry and Electrochemical Engineering. John Wiley & Sons, New York, pp. 329.
  11. R. de Levie, 'On porous electrodes in electrolyte solutions-IV', Electrochim. Acta, 9, 1231 (1964). https://doi.org/10.1016/0013-4686(64)85015-5
  12. R. de Levie, 'On porous electrodes in electrolyte solutions', Electrochim. Acta, 8, 751 (1963).
  13. J. H. Jang, S. Yoon, B. H. Ka, and S. M. Oh, 'Potentialdependent complex capacitance analysis for porous carbon electrodes', J. Kor. Electrochem. Soc., 6, 255 (2003). https://doi.org/10.5229/JKES.2003.6.4.255
  14. R. de Levie, 'Advances in Electrochemistry and Electrochemical Engineering', in: Delahay, P. (Ed.). John Wiley & Sons, New York, p.329 (1967).
  15. H.-K. Song, H.-Y. Hwang, K.-H. Lee, and L. H. Dao, 'The effect of pore size distribution on the frequency dispersion of porous electrodes', Electrochim. Acta, 45, 2241 (2000). https://doi.org/10.1016/S0013-4686(99)00436-3
  16. H.-K. Song, Y.-H. Jung, K.-H. Lee, and L. H. Dao, 'Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution', Electrochim. Acta, 44, 3513 (1999). https://doi.org/10.1016/S0013-4686(99)00121-8
  17. W. L. Briggs and V. E. Henson, "The DFT: An Owner's Manual for the Discrete Fourier Transform, the Society for Industrial and Applied Mathematics", Philadelphia (1995).
  18. E. O. Brigham, "The Fast Fourier Transform and its Applications", Prentice Hall, New Jersey (1988).
  19. H. Shi, 'Activated carbons and double layer capacitance', Electrochim. Acta, 41, 1633 (1996). https://doi.org/10.1016/0013-4686(95)00416-5
  20. J.-P. Randin and E. Yeager, 'Differential capacitance study on the basal plane of stress-annealed pyrolytic graphite', J. Electroanal. Chem., 36, 257 (1972). https://doi.org/10.1016/S0022-0728(72)80249-3
  21. J.-P. Randin and E. Yeager, 'Differential capacitance study on the edge orientation of pyrolytic graphite and glassy carbon electrodes', J. Electroanal. Chem., 58, 313 (1975). https://doi.org/10.1016/S0022-0728(75)80089-1
  22. K. Kinoshita, "Carbon: Electrochemical and Physicochemical Properties", John Wiley & Sons, New York (1988).
  23. B. E. Conway, "Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications", Kluwer Academic / Plenum Publishers, New York (1999).
  24. J. Lee, S. Yoon, T. Hyeon, S. M. Oh, and K. B. Kim, 'Synthesis of a new mesoporous carbon and its application to electrochemical double layer capacitors', Chem. Commun., 21, 2177 (1999).
  25. J. Lee, S. Yoon, S. M. Oh, and T. Hyeon, 'Development of a new mesoporous carbon through HMS-aluminosilicate template', Adv. Mater., 12, 359 (2000). https://doi.org/10.1002/(SICI)1521-4095(200003)12:5<359::AID-ADMA359>3.0.CO;2-1
  26. S. Yoon, J. Lee, T. Hyeon, and S. M. Oh, 'Electric doublelayer capacitor performance of a new mesoporous carbon', J. Electrochem. Soc., 147, 2507 (2000). https://doi.org/10.1149/1.1393561
  27. K. Jurewicz, C. Vix-Guterl, E. Frackowiakb, S. Saadallaha, M. Redaa, J. Parmentierc, J. Patarinc, and F. Béguind, 'Capacitance properties of ordered porous carbon materials prepared by a templating procedure', J. Phys. Chem. Solids, 65, 287 (2004). https://doi.org/10.1016/j.jpcs.2003.10.024
  28. R. Kotz and M. Carlen, 'Principles and application sof electrochemical capacitors', Electrochim. Acta, 45, 2483 (2000). https://doi.org/10.1016/S0013-4686(00)00354-6
  29. O. Lanzi and U. Landau, 'Effect of pore structure on current and potential distributions in a porous electrode', J. Electrochem. Soc., 137, 585 (1990). https://doi.org/10.1149/1.2086511
  30. V. Srinivasan and J. W. Weidner, 'Mathematical modeling of electrochemical capacitors', J. Electrochem. Soc., 146, 1650 (1999). https://doi.org/10.1149/1.1391821
  31. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, and O. Terasaki, 'Synthesis of new nanoporous carbon with hexagonally ordered mesostructure', J. Am. Chem. Soc., 122, 10712 (2000). https://doi.org/10.1021/ja002261e
  32. A. Lasia, 'Impedance of porous electrodes', J. Electroanal. Chem., 397, 27 (1995). https://doi.org/10.1016/0022-0728(95)04177-5
  33. R. K. Shrvedani and A. Lasia, 'Kinetics of hydrogen evolution reaction on nickel-zinc-phosphorous electrodes', J. Electrochem. Soc., 144, 2652 (1997). https://doi.org/10.1149/1.1837878
  34. C. Hitz and A. Lasia, 'Experimental study and modeling of impedance of the her on porous Ni electrodes', J. Electroanal. Chem., 500, 213 (2001). https://doi.org/10.1016/S0022-0728(00)00317-X
  35. J.-P. Candy, P. Fouilloux, M. Keddam, and H. Takenouti, 'The pore texture of raney-nickel determined by impedance measurements', Electrochim. Acta, 27, 1585 (1982). https://doi.org/10.1016/0013-4686(82)80084-4
  36. T. E. Springer, M. S. Wilson, and S. Gottesfeld, 'Modeling and experimental diagnostics in polymer electrolyte fuel cells', J. Electrochem. Soc., 140, 3513 (1993). https://doi.org/10.1149/1.2221120
  37. G.-J. Lee, S.-I. Pyun, and C.-H. Kim, 'Kinetics of doublelayer charging/discharging of the activated carbon fiber cloth electrode: effects of pore length distribution and solution resistance', J. Solid State Electrochem., 8, 110 (2004). https://doi.org/10.1007/s10008-003-0392-x
  38. J. Koresh and A. Soffer, 'Double layer capacitance and charging rate of ultramicroporous carbon electrodes', J. Electrochem. Soc., 124, 1379 (1977). https://doi.org/10.1149/1.2133657
  39. W. Y. Lo, K. Y. Chan, and K. L. Mok, 'Molecular dynamics simulation of ions in charged capillaries', J. Phys.: Condens. Matter, 6, A145 (1994). https://doi.org/10.1088/0953-8984/6/23A/019
  40. W. Y. Lo, K. Y. Chan, M. Lee, and K. L. Mok, 'Molecular simulation of electrolytes in nanapores', J. Electroanal. Chem., 450, 265 (1998). https://doi.org/10.1016/S0022-0728(97)00643-8
  41. M. Ue, 'Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and g-butyrolactone', J. Electrochem. Soc., 141, 3336 (1994). https://doi.org/10.1149/1.2059336
  42. J. H. Jang, S. Jeon, J. H. Cho, S.-K. Kim, S.-Y. Lee, E. Cho, H.-J. Kim, J. Han, and T.-H. Lim, 'Complex Capacitance Analysis of Ionic Resistance and Interfacial Capacitance in PEMFC and DMFC Catalyst Layers', J. Electrochem. Soc, 156, B1293 (2009). https://doi.org/10.1149/1.3187928
  43. H.-K. Song, J.-H. Sung, Y.-H. Jung, K.-H. Lee, L. H. Dao, M.-H. Kim, and H.-N. Kim, 'Electrochemical Porosimetry', J. Electrochem. Soc, 151, E102 (2004). https://doi.org/10.1149/1.1641041

Cited by

  1. A Development of High Power Activated Carbon Using the KOH Activation of Soft Carbon Series Cokes vol.15, pp.2, 2014, https://doi.org/10.4313/TEEM.2014.15.2.81
  2. A facile approach to improve the performance of alkaline anion exchange membrane fuel cells by reducing ionic resistance 2017, https://doi.org/10.1016/j.jiec.2017.12.043
  3. Development of an Electro Impedance Spectroscopy device for EDLC super capacitor characterization in a mass production line vol.13, pp.12, 2012, https://doi.org/10.5762/KAIS.2012.13.12.5647
  4. Electrochemical Characteristics of an Electric Double Layer Supercapacitor Electrode using Cooked-Rice based Activated Carbon vol.16, pp.3, 2013, https://doi.org/10.5229/JKES.2013.16.3.129
  5. Electrochemical characteristics of electrospun La0.6Sr0.4Co0.2Fe0.8O3−δ-Gd0.1Ce0.9O1.95 cathode vol.40, pp.6, 2014, https://doi.org/10.1016/j.ceramint.2013.12.158
  6. Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors vol.267, 2014, https://doi.org/10.1016/j.jpowsour.2014.05.058
  7. Pore Structure and Electrochemical Properties of Carbon Aerogels as an EDLC-Electrode with Different Preparation Conditions vol.28, pp.1, 2018, https://doi.org/10.3740/MRSK.2018.28.1.50