• Title/Summary/Keyword: 미생물활성

Search Result 3,233, Processing Time 0.041 seconds

Detection of Zymogenic ChsC Activity in Vegetative Hyphae of Aspergillus nidulans. (Aspergillus nidulans 영양균사에서 효소전구체형 ChsC 활성의 검출)

  • 박범찬;박윤희;박희문
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.178-182
    • /
    • 2004
  • In the vegetative hyphae of Aspergillus nidulans, a zymogenic form of the class I chitin synthase activity was successfully measured by the assay condition for Saccharomyces cerevisiae class I chitin synthase, Chsl. The class I chitin synthase activity of the A. nidulans chsC wild type strain was increased about six-fold by trypsin-pretreatment, but that of the chsC disruption strain revealed no increase. Interestingly enough, level of the class I chitin synthase activity of the chsC disruption strain was almost the same as that of the chsC wild type without trypsin-pretreatment. These results indicated that the A. nidulans ChsC activity could be measured by account-ing the class I chitin synthase activity without the trypsin-pretreatment as an internal control. Consistence to the expression pattern of the chsC revealed by northern blot analysis, the activity of ChsC was increased upon reaching the culture time for acquiring developmental competence. Our results shown here also supported the previous report suggesting the possible involvement of ChsC in vegetative hyphal growth of A. nidulans.

Effect of Neuronal Differentiation Activity of Hot Water Extracts of Marine Alga, Chlorella capsulata (해수 미세조류인 Chlorella capsulata의 열 수 추출물의 신경세포 분화촉진에 관한 연구)

  • 이현용;이현수;이서호;김대호;박진홍
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.165-170
    • /
    • 2003
  • Hot water extracts of Chlorella capsulata(CCE) is a biological response modifier (BRM) which exhibits neuronal differentiation activity. The effect of CCE on the growth of nerve cells, PC12 was observed as follows: The viable cell density in adding CCE was increased up to 2.5 times, compare to that in no addition. The neurite of the cells was also lengthened up to 40 $\mu\textrm{m}$ longer than 5 $\mu\textrm{m}$ in no addition. The number of neurite-bearing cells were about four times higher than that in no addition.

Effect of Additives on Solubilization of Sulfur Compounds in the Crude Oil by Tergitol Series Nonionic Surfactants (Tergitol 계열 비이온 계면활성제 시스템에서 첨가제가 원유의 황화합물 가용화에 미치는 영향에 관한 연구)

  • Han, Ji-Won;Lim, JongChoo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.226-233
    • /
    • 2007
  • In this study, the effects of additives such as ionic surfactant and cosurfactant were studied on the solubilization of sulfur compounds contained in the crude oil by Tergitol series nonionic surfactants. It was found that the addition of an ionic surfactant such as sodium oleate, potassium oleate, CTAB and DTAB did not enhance solubilization capacity of Tergitol series nonionic surfactant. On the other hand, the addition of a long-chain alcohol as a cosurfactant increased the solubilization of sulfur compounds in the crude oil. The effect of alcohol was found to become reduced with an increase in the amount of crude oil used mainly due to partitioning phenomena of an nonionic surfactant. The enhancement of solubilizing capacity of Tergitol series nonionic surfactant with addition of a cosurfactant was associated with a decrease in interfacial tension between crude oil and surfactant solution. The pH of Tergitol nonionic surfactant solution did not affect the solubilization of sulfur compounds. Finally, it was found that the growth of sulfur reducing microoganisms was not greatly affected by both addition of nonionic surfactant and cosurfactant.

Autotrophic Perchlorate-Removal Using Elemental Sulfur Granules and Activated Sludge: Batch Test (원소 황 입자와 활성 슬러지를 이용한 독립영양방식의 퍼클로레이트 제거: 회분배양연구)

  • Han, Kyoung-Rim;Kang, Tae-Ho;Kang, Hyung-Chang;Kim, Kyung-Hun;Seo, Deuk-Hwa;Ahn, Yeong-Hee
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1473-1480
    • /
    • 2011
  • Perchlorate ($ClO_4^-$) is a contaminant found in surface water and soil/ground water. Microbial removal of perchlorate is the method of choice since microorganisms can reduce perchlorate into harmless end-products. Such microorganisms require an electron donor to reduce perchlorate. Conventional perchlorate-removal techniques employ heterotrophic perchlorate-reducing bacteria that use organic compounds as electron donors to reduce perchlorate. Since continuous removal of perchlorate requires a continuous supply of organic compounds, heterotrophic perchlorate removal is an expensive process. Feasibility of autotrophic perchlorate-removal using elemental sulfur granules and activated sludge was examined in this study. Granular sulfur is relatively inexpensive and activated sludge is easily available from wastewater treatment plants. Batch tests showed that activated sludge microorganisms could successfully degrade perchlorate in the presence of granular sulfur as an electron donor. Perchlorate biodegradation was confirmed by molar yield of $Cl^-$ as the perchlorate was degraded. Scanning electron microscope revealed that rod-shaped microorganisms on the surface of sulfur particles were used for the autotrophic perchlorate-removal, suggesting that sulfur particles could serve as supporting media for the formation of biofilm as well. DGGE analyses revealed that microbial profile of the inoculum (activated sludge) was different from that of the biofilm sample obtained from enrichment culture that used sulfur particles for $ClO_4^-$-degradation.

Development of Real-time Groundwater Quality Monitoring and Advanced Groundwater Purification Technology for Groundwater using Photoinduced Reactive Oxygen Species (지하수 수질 실시간 모니터링 및 광유도 활성산소를 이용한 고도수처리 기술)

  • Kang-Kyun Wang;Byung-Woo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.15-15
    • /
    • 2023
  • 2020년 기준 국내 상수도 보급률은 99.1% 차지하고 있으며(환경부, 2019), 수도관리차원에서 수돗물은 먹는 물로 시판되어질 만큼 우수한 관리체계를 유지하고 있다. 그 반면에 지하수는 생활용수, 식품가공, 농·축산, 양어, 군부대를 비롯한 전국지역에서 연간 10억 8천만톤 용수를 소비하고 있음에도 (환겨례 신문, 2013; 환경부, 2019) 사용되는 지하수의 약 65%가 음용수 불가판정을 받았으며, 최근 지하수의 오염비율은 급격히 증가하는 추세이다. 특히, 지하수관정의 관리부주의에 의한 수질오염 및 수인성 다제내성균(슈퍼박테리아) 등에 의한 오염사례가 국내는 물론, 국제적으로 다수 보고되고 있는 실정이다 (환경부, 2013). 현재 지하수 수질관리는 공공기관 및 지자체 지정기관을 통해 진행되고 있으며, 검사기간은 수질채취로부터 통상 7~15일정도 소요되어 수질 관리 및 기준, 검사주기에 대한 애로가 많다. 현장 지하수관정에서 실시간 수질을 모니터링하고 이에 연동된 자동 수처리 시스템의 개발 및 도입은 나날이 심각해지는 환경오염 상황에서 선제적 예방과 해결방법으로 중요한 요소기술이다. 현재 지하수오염 및 부적합 음용의 수질처리는 화학약품, 필터여과, UV살균, O3 (플라즈마)을 이용하는 것이 대표적이나, 화학약품의 경우 2차 오염이나 식품 세척 및 가공에 있어 부적합성의 한계점이 있다. 필터여과의 대표적인 RO필터의 경우 약 50% 순손실이 발생하고, UV 살균의 경우 UV에 의한 사용관리자의 위험 및 장비의 광부식 문제, O3 의 경우 고압전류 사용에 따른 위험성 등의 한계점이 나타나고 있다. 지하수 수질정화를 위한 광유도 활성산소(1O2, ·O-2)는 광감응제에 가시광의 빛 조사를 통해 생성되는 활성산소로의 에너지 및 전자 전이가 동시 진행되어 단일항 산소(1O2)와 슈퍼옥사이드 이온(·O-2)을 생성하게 된다. 생성된 활성산소는 유해미생물 또는 유기화학물과 개열, 제거, 치환 반응 등을 통해 미생물사멸 및 유해화학물질들이 분해 가능하다. 이를 이용한 지하수 유해미생물 사멸기술, 장비, 실시간 지하수의 분석기술 및 정수처리, 지하수 물순환 시스템 개발뿐만 아니라 지하수 음용수 및 오염개선, 지하수 기저유출에 의한 오염원 저감으로부터 지류·지천, 하천 본류 수질개선 등의 대상지역에 활용 가능하다. 또한 광유도 활성산소는 기존 상수도 수처리에 있어 오존(O3) 처리와 이산화티탄을 이용한 AOP과정을 단일처리 공정으로, 기존 O3 의 특성상 확산 거리가 매우 길어 사람을 포함한 생체 내에 유입 시 다양한 부작용 발생과 O3 차폐시설 요구의 문제점 극복의 대안으로 환경 및 인체에 무해한 광유도 활성산소 시스템을 적극적으로 도입 및 적용해야 한다. 본 연구 목적은 정류상태 흡광분광기술을 이용한 실시간 수질 모니터링과 광유도 활성산소를 이용한 유해 미생물의 멸균효능 및 지하수 수질관리 기술로의 적용 가능성을 제시하고자 한다.

  • PDF

Herbicidal Effect of 5-Aminolevulinic Acid, a Biodegradable Photodynamic Substance (생분해성 광활성 물질 5-aminolevulinic acid의 제초활성)

  • Chon, Sang-Uk;Kim, Young-Min
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.1
    • /
    • pp.38-45
    • /
    • 2007
  • Laboratory and greenhouse experiments were conducted to determine the herbicidal effect of two types of ${\delta}$-aminolevulinic acid (ALA), microbiologically-produced ALA (Bio-ALA) and synthetically produced ALA (Synthetic-ALA), on plant growth and chlorophyll content of Chinese cabbage. ALA effect on early plant growth was greatly concentration dependant, showing significant inhibition at higher concentrations. Both pre- and post-emergence application of ALA exhibited significant degree of photodynamic phytotoxicity. Older plants with many leaves were more tolerant to ALA than younger plants, showing less injury. No significant difference in herbicidal activity of two types of ALA, Bio-ALA and Synthetic-ALA, on plant height and chlorophyll content of Chinese cabbage was observed. However, residual biological activity and physico-chemical properties of Synthetic-ALA were more stable than those of Bio-ALA. Our results suggest that ALA had herbicidal potential with both pre- and post-emergence application, and that the chemical may be a valuable mean of eco-friendly weed control based on natural microbial substance.

Simultaneous Overpexpression of Genes Encoding Cellulose- and Xylan-Degrading Enzymes through High Density Culture of a Recombinant Yeast Cell (재조합 효모 세포의 고농도배양을 통한 섬유소와 자일란 분해효소 유전자의 동시 과발현)

  • Kim, Yeon-Hee;Heo, Sun-Yeon;Kim, Gun-Do;Nam, Soo-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.390-394
    • /
    • 2018
  • For the coexpression of endoxylanase and endoglucanase genes in yeast Saccharomyces cerevisiae, the genes were separately inserted downstream of the yeast ADH1 promoters, resulting the plasmid pAGX3 (9.83 kb). In the batch culture on YPD medium of the yeast transformant, S. cerevisiae SEY2102/pAGX3, the total activities of the enzymes reached about 7.91 units/ml for endoxylanase and 0.43 units/ml for endoglucanase. In the fed-batch culture with intermittent feeding of yeast extract and glucose, the total activities of 24.9 units/ml for endoxylanase and 0.84 units/ml for endoglucanase were produced which were about 3.1-fold and 2.0-fold increased levels, respectively, compared to those of the batch culture. Most of endoxylanase and endoglucanase activities were found in the extracellular media. This recombinant yeast could be useful for the development of simultaneous saccharification bioprocess of the cellulose and xylan mixture.

Isolation and Characterization of Phosphate Solubilizing Bacteria Pantoea Species as a Plant Growth Promoting Rhizobacteria (식물 생장 촉진 활성을 가진 인산분해 미생물 Pantoea 종의 분리 및 특성 규명)

  • Yun, Chang Yeon;Cheong, Yong Hwa
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1163-1168
    • /
    • 2016
  • Plant growth-promoting rhizobacteria (PGPR) have gained worldwide importance and acceptance due to their agricultural benefits. These microorganisms are potential tools for sustainable agriculture, with effects on plant growth, biofertilization, induced systemic resistance, and biocontrol of plant pathogens. In this study, four different Pantoea species were isolated from field soil, and their plant growth-promoting characteristics were studied. Based on 16S rDNA gene sequencing analyses, the se were grouped into Pantoea ananatis, Pantoea citrea, Pantoea dispersa, Pantoea vagans and named as Pa1, Pc1, Pd1, Pv1, respectively. All of these strains have their ability for solubilization of insoluble phosphate depending on pH decrease at the range around pH 5 at 1days after inoculation and production of plant hormone indole acetic acid (IAA) with 85.3±16.3 μg/ml of Pa1, 183.9±16.8 μg/ml of Pc1, 28.8±17.3 μg/ml of Pd1 and 114.1±16.5 μg/ml of Pv1, respectively. Pa1, Pc1 and Pd1 also have high activity for production of gibberellin (GA3) hormone with 331.1±19.2 μg/ml of Pa1, 288.5±16.8 μg/ml of Pc1, 309.2±18.2 μg/ml of Pd1, but Pv1 does not. Furthermore, all these species have significantly promoted the growth of the lettuce seedling plants at the range around 32~37% for fresh weight and 10~15% for shoot length enhancement, so that these microbe could be used as a potential bio-fertilizer agents.

Establishing Effective Screening Methodology for Novel Herbicide Substances from Metagenome (신규 제초활성 물질 발굴을 위한 메타게놈 스크리닝 방법 연구)

  • Lee, Boyoung;Choi, Ji Eun;Kim, Young Sook;Song, Jae Kwang;Ko, Young Kwan;Choi, Jung Sup
    • Weed & Turfgrass Science
    • /
    • v.4 no.2
    • /
    • pp.118-123
    • /
    • 2015
  • Metagenomics is a powerful tool to isolate novel biocatalyst and biomolecules directly from the environmental DNA libraries. Since the metagenomics approach bypasses cultivation of microorganisms, un-cultured microorganisms that are majority of exists can be the richest reservoir for natural products discovery. To discover novel herbicidal substances from soil metagenome, we established three easy, simple and effective high throughput screening methods such as cucumber cotyledon leaf disc assay, microalgae assay and seed germination assay. Employing the methods, we isolated two active single clones (9-G1 and 9-G12) expressing herbicidal activity which whitened leaf discs, inhibited growth of microalgae and inhibited root growth of germinated Arabidopsis seeds. Spraying butanol fraction of the isolated active clones' culture broth led to growth retardation or desiccation of Digitalia sanguinalis (L) Scop. in vivo. These results represent that the screening methods established in this study are useful to screen herbicidal substances from metagenome libraries. Further identifying molecular structure of the herbicidal active substances and analyzing gene clusters encoding synthesis systems for the active substances are in progress.