• Title/Summary/Keyword: 미분근사

Search Result 127, Processing Time 0.026 seconds

Error Analysis of Approximate Solution by Differential Transform Method with respect to Non-linearity of Duffing Equation (미분변환법을 이용해 구해진 Duffing Equation 근사해의 비선형성 증가에 따른 오차 분석)

  • Yang, Seong-Uk;Kim, Dong-Hun;Kim, Bong-Gyun;Yang, Jun-Mo;Lee, Sang-Cheol
    • 한국항공운항학회:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.20-24
    • /
    • 2015
  • 미분변환법은 미분방정식의 해를 구하기 위한 방법으로 다양한 분야에서 적용에 관한 연구를 수행 중이다. 항공우주분야의 동역학 모델링의 경우 미분방정식은 비선형성을 포함하게 되며 일반적으로 수치해석을 이용해 근사해를 구하게 된다. 본 논문에서는 미분변환법을 이용해 구해진 근사해의 오차 추이를 분석한 내용을 다루고 있다. 이를 위한 예제로써 duffing equation을 사용하였으며, duffing equation에 포함된 비선형성을 증가시킴에 따라 미분변환법을 이용해 구한 근사해와 수치해석을 이용해 구한 수치해를 비교하였다.

  • PDF

The East Moving Least Square Reproducing Kernel Approximation and Point Collocation Method (고속 최소 자승법을 이용한 점별 계산법)

  • 김용식;김도완
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.567-574
    • /
    • 2002
  • 새로운 자유격자 관사를 이용한 점별 계산법을 제안한다 이동 최소 자승법을 이용한 기저의 생성과 기저의 근사적 미분을 동시에 구해내는 자유격자 근사를 유도하여, 직접 점별 계산법을 고안하였다. 기존의 자유 격자 법에서는 기저의 직접 미분을 사용하므로 높은 계산 비용이 필요하지만, 이 논문에서 제안된 방법은 기저의 생성과 동시에 기저의 근사적 미분을 구하게 된다. 또한 기존의 방법에서 필요하였던, 창 함수(window function)의 미분가능성을 연속성으로 대치할 수 있으므로, 주어진 문제에 따라 다양한 창 함수를 이용할 수 있다. 기저의 재생성과 interpolation의 수렴성을 소개하고, 수치 예제로서, Poisson 문제를 통해 이 방법의 유효함을 보인다.

  • PDF

On the Improvement of the Accuracy of Higher Order Derivatives in the MLS(Moving Least Square) Difference Method via Mixed Formulation (MLS 차분법의 결정 변수에 따른 정확도 분석 및 혼합변분이론을 통한 미분근사 성능향상)

  • Kim, Hyun-Young;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.279-286
    • /
    • 2020
  • In this study, we investigate the accuracy of higher order derivatives in the moving least square (MLS) difference method. An interpolation function is constructed by employing a Taylor series expansion via MLS approximation. The function is then applied to the mixed variational theorem in which the displacement and stress resultants are treated as independent variables. The higher order derivatives are evaluated by solving simply supported beams and cantilevers. The results are compared with the analytical solutions in terms of the order of polynomials, support size of the weighting function, and number of nodes. The accuracy of the higher order derivatives improves with the employment of the mean value theorem, especially for very high-order derivatives (e.g., above fourth-order derivatives), which are important in a classical asymptotic analysis.

Dynamic Analysis of MLS Difference Method using First Order Differential Approximation (1차 미분 근사를 이용한 MLS차분법의 동적해석)

  • Kim, Kyeong-Hwan;Yoon, Young-Cheol;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.331-337
    • /
    • 2018
  • This paper presents dynamic algorithm of the MLS(moving least squares) difference method using first order differential Approximation. The governing equations are only discretized by the first order MLS derivative approximation. The system equation consists of an assembly of the approximate function, so the shape of system equation is similar to FEM(finite element method). The CDM(central difference method) is used for time integration of dynamic equilibrium equation. The natural frequency analyses of the MLS difference method and FEM are performed, and two analysis results are compared. Also, the accuracy of the proposed numerical method is verified by displaying the dynamic analysis results together with the results by the existing second order differential approximation. In the process of assembling the first order MLS derivative approximation, the oscillation error was suppressed and the stress distribution was interpreted as relatively uniform.

Development of Explicit Dynamic Algorithm for MLS Difference scheme (MLS 차분법을 위한 Explicit 동적해석 알고리즘 개발)

  • Kim, Kyeong-Hwan;Yoon, Young-Cheol;Lee, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.179-182
    • /
    • 2010
  • 본 연구에서는 MLS 차분법을 이용하여 동역학 문제를 해석하기 위한 explicit 동적해석 알고리즘을 제시한다. 격자망이 없는 장점을 부각시키기 위해 이동최소제곱법에 근거한 Taylor 전개로부터 미분근사를 얻고 차분식을 구성했다. 지배 미분방정식의 시간항을 CDM(Central difference Method) 차분하여 빠른 속도로 동적해석을 수행하였다. 수치결과를 통해 본 연구에서 제시한 알고리즘의 정확성과 안정성을 확인할 수 있었다.

  • PDF

Nonlinear Responses of a Hinged-Clamped Beam under Random Excitation (불규칙 가진되는 회전-고정보의 비선형응답특성)

  • 조덕상;김영종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.427-436
    • /
    • 2000
  • This study presents the nonlinear responses of a hinged-clamped beam under broadband random excitation. By using Galerkin's method the governing equation is reduced to a system or nonautonomous nonlinear ordinary differential equations. The Fokker-Planck equation is used to generate a general first-order differential equation in the joint moments of response coordinates. Gaussian and non-Gaussian closure schemes are used to close the infinite coupled moment equations. The closed equations are then solved for response statistics in terms of system and excitation parameters. The case of two mode interaction is considered in order to compare it with the case of three mode interaction. Monte Carlo simulation is used for numerical verification.

  • PDF

Development of MLS Difference Method for Material Nonlinear Problem (MLS차분법을 이용한 재료비선형 문제 해석)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • This paper presents a nonlinear Moving Least Squares(MLS) difference method for material nonlinearity problem. The MLS difference method, which employs strong formulation involving the fast derivative approximation, discretizes governing partial differential equation based on a node model. However, the conventional MLS difference method cannot explicitly handle constitutive equation since it solves solid mechanics problems by using the Navier's equation that unifies unknowns into one variable, displacement. In this study, a double derivative approximation is devised to treat the constitutive equation of inelastic material in the framework of strong formulation; in fact, it manipulates the first order derivative approximation two times. The equilibrium equation described by the divergence of stress tensor is directly discretized and is linearized by the Newton method; as a result, an iterative procedure is developed to find convergent solution. Stresses and internal variables are calculated and updated by the return mapping algorithm. Effectiveness and stability of the iterative procedure is improved by using algorithmic tangent modulus. The consistency of the double derivative approximation was shown by the reproducing property test. Also, accuracy and stability of the procedure were verified by analyzing inelastic beam under incremental tensile loading.

노심 동특성 분석 정확도 및 성능 향상을 위한 Time Step 제어방법 개선

  • 김영일;김영진;주형국;김택겸
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.79-84
    • /
    • 1997
  • 동특성 분석 코드 시스템 PANBOX2는 시간에 대한 미분을 Implicit Euler 방법을 사용하여 근사한다. 이 경우 Local Truncation Error는 중성자속의 이차 미분에 비례한다. Time-Step-Doubling 기법을 이용하여 Local Truncation Error의 근사치를 구하고 이를 이용하여 Time Step Size를 조절해 주는 방법을 동특성 분석 코드 시스템 PANBOX2에 도입하였다. LRA와 NEACRP 제어봉 인출사고 검증문제에 대한 분석 결과, PANBOX2 시스템의 기존 방법에 비해 효과적으로 Time Step을 제어하였으며 보다 정확한 결과를 얻을 수 있었다.

  • PDF

Intrinsic Enrichment of Moving Least Squares Finite Difference Method for Solving Elastic Crack Problems (탄성균열 해석을 위한 이동최소제곱 유한차분법의 내적확장)

  • Yoon, Young-Cheol;Lee, Sang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.457-465
    • /
    • 2009
  • This study presents a moving least squares (MLS) finite difference method for solving elastic crack problems with stress singularity at the crack tip. Near-tip functions are intrinsically employed in the MLS approximation to model near-tip field inducing singularity in stress field. employment of the functions does not lose the merit of the MLS Taylor polynomial approximation which approximates the derivatives of a function without actual differentiating process. In the formulation of crack problem, computational efficiency is considerably improved by taking the strong formulation instead of weak formulation involving time consuming numerical quadrature Difference equations are constructed on the nodes distributed in computational domain. Numerical experiments for crack problems show that the intrinsically enriched MLS finite difference method can sharply capture the singular behavior of near-tip stress and accurately evaluate stress intensity factors.

Analysis of Stress Concentration Problems Using Moving Least Squares Finite Difference Method(I) : Formulation for Solid Mechanics Problem (이동최소제곱 유한차분법을 이용한 응력집중문제 해석(I) : 고체문제의 정식화)

  • Yoon, Young-Cheol;Kim, Hyo-Jin;Kim, Dong-Jo;Liu, Wing Kam;Belytschko, Ted;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.493-499
    • /
    • 2007
  • The Taylor expansion expresses a differentiable function and its coefficients provide good approximations for the given function and its derivatives. In this study, m-th order Taylor Polynomial is constructed and the coefficients are computed by the Moving Least Squares method. The coefficients are applied to the governing partial differential equation for solid problems including crack problems. The discrete system of difference equations are set up based on the concept of point collocation. The developed method effectively overcomes the shortcomings of the finite difference method which is dependent of the grid structure and has no approximation function, and the Galerkin-based meshfree method which involves time-consuming integration of weak form and differentiation of the shape function and cumbersome treatment of essential boundary.