• Title/Summary/Keyword: 미끄럼 조인트

Search Result 5, Processing Time 0.022 seconds

A Study on the Sliding Ball Joint of Parallel Kinematic Mechanism (병렬 운동 기구의 미끄럼 볼 조인트 개발에 관한 연구)

  • Yoo, Dae-Won;Lee, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.982-989
    • /
    • 2009
  • Parallel Kinematic Mechanism (PKM) is a device to perform the various motion in three-dimensional space and it calls for six degree of freedom. For example, Parallel Kinematic Mechanism is applied to machine tools, medical equipments, MEMS, virtual reality devices and flight motion simulators. Recently, many companies have tried to develop new Parallel Kinematic Mechanism in order to improve the cycle time and the precisional tolerance. Parallel Kinematic Mechanism uses general universal joint and spherical joint, but such joints have accumulated tolerance problems. Therefore, it causes position control problem and dramatically life time reduction. This paper focused on the rolling element to improve sliding precision in new sliding ball joint development. Before the final design and production, it was confirmed that new sliding ball joint held a higher load and a good geometrical structure. FEM analysis showed a favorable agreement with tensile and compressive testing results by universal testing machine. In conclusions, a new sliding ball joint has been developed to solve a problem of accumulated tolerance and verified using tensile and compressive testing as well as FEM analysis.

Inverse Dynamic Analysis of Constrained Multibody Systems Considering Friction Forces on Kinematic Joints (기구학적 조인트에서 마찰력을 고려한 구속 다물체계의 역동역학 해석)

  • Park, Jeong-Hun;Yu, Hong-Hui;Hwang, Yo-Ha;Bae, Dae-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2050-2058
    • /
    • 2000
  • A method for the inverse dynamic analysis of constrained multibody systems considering friction forces acting on kinematic joints is presented in this paper. The stiction and the sliding which represent zero and non-zero relative motions are considered during the inverse dynamic analysis. Actuating forces to control the position or the orientation of constrained multibody systems are usually calculated in the inverse dynamic analysis. An iterative procedure need to be employed to calculate the actuating forces when the friction is considered. Furthermore, the actuating forces are not uniquely determined during the stiction. These difficulties are resolved by the method presented in this paper.

Development of a Dynamic Simulation Program Including a Wheel-Rail Contact Module (휠-레일 접촉모듈을 포함한 동역학 해석 프로그램 개발)

  • Cho, Jae-Ik;Park, Tae-Won;Yoon, Ji-Won;Lee, Soo-Ho;Jung, Sung-Pil
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • Various programs for dynamic simulation of the railway vehicle have advantages and disadvantages. These programs have limitation that cannot express a large deformable body for an wire of the railway vehicle. In this study, a program for dynamic simulation of the railway vehicle is developed. And the rigid, flexible and large deformable body can be simulated using this program. Its reliability is verified by comparison with a commercial program. Also, a wire is considered as the large deformable body and a sliding joint which connects the rigid body to the large deformable body is included. Moreover, as the wheel-rail contact module is added, the dynamic simulation of the railway vehicle can be analyzed using the developed program.

Dynamic Analysis of a Very Flexible Cable Carrying A Moving Multibody System (다물체 시스템이 이동하는 유연한 케이블의 동역학 해석에 관한 연구)

  • 서종휘;정일호;한형석;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.150-156
    • /
    • 2004
  • In this paper, the dynamic behavior of a very flexible cable due to moving multibody system along its length is presented. The very deformable motion of a cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. Formulation for the sliding joint between a very flexible beam and a rigid body is derived. In order to formulate the constraint equations of this joint, a non-generalized coordinate, which has no inertia or forces associated with this coordinate, is used. The modeling of this sliding joint is very important to many mechanical applications such as the ski lifts. cable cars, and pulley systems. A multibody system moves along an elastic cable using this sliding joint. A numerical example is shownusing the developed analysis program for flexible multibody systems that include a large deformable cable.

Experimental Investigation on Torsional Analysis and Fracture of Tripod Shaft for High-speed Train (고속열차용 트리포드 축의 비틀림 해석 및 파단에 대한 실험적 연구)

  • Lee, Joo Hong;Kim, Do Sik;Nam, Tae Yeon;Lee, Tae Young;Cho, Hae Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.979-986
    • /
    • 2016
  • The tripod shafts of constant-velocity joint are used in both the trains KTX and KTX-sanchon. It is an important component that connects the motor reduction unit and the axle reduction unit in a power bogie. The tripod shaft not only transmits drive and brake torque in the rotational direction, but also slides in the axial direction. If the drive system is loaded with an excessive torque, the fuse part of the shaft will be fractured firstly to protect the other important components. In this study, a rig was developed for conducting torsion tests on the tripod shaft, which is a type of mechanical fuse. The tripod shafts were subjected to torsional fracture test and torsional fatigue test on the rig. The weak zone of the tripod shaft was identified, and its fatigue life was predicted using finite element analysis (FEA). After analyzing the FEA results, design solutions were proposed to improve the strength and fatigue life of the tripod shaft. Furthermore, the deterioration trend and time for failure of the tripod shaft were verified using the hysteresis loops which had been changed with the advancement of the torsional fatigue test.