• Title/Summary/Keyword: 무한소수

Search Result 21, Processing Time 0.022 seconds

The Infinite Decimal Representation: Its Opaqueness and Transparency (무한소수 기호: 불투명성과 투명성)

  • Lee, Jihyun
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.4
    • /
    • pp.595-605
    • /
    • 2014
  • Infinite decimals have an infinite number of digits, chosen arbitrary and independently, to the right side of the decimal point. Since infinite decimals are ambiguous numbers impossible to write them down completely, the infinite decimal representation accompanies unavoidable opaqueness. This article focused the transparent aspect of infinite decimal representation with respect to the completeness axiom of real numbers. Long before the formalization of real number concept in $19^{th}$ century, many mathematicians were able to deal with real numbers relying on this transparency of infinite decimal representations. This analysis will contribute to overcome the double discontinuity caused by the different conceptualizations of real numbers in school and academic mathematics.

  • PDF

A Study on understanding of infinite decimal (무한소수에 대한 학생들의 이해)

  • Park, Dal-Won
    • Journal of the Korean School Mathematics Society
    • /
    • v.10 no.2
    • /
    • pp.237-246
    • /
    • 2007
  • According to 7-th curriculum, irrational number should be introduced using non-repeating infinite decimals. A rational number is defined by a number determined by the ratio of some integer p to some non-zero integer q in 7-th grade. In 8-th grade, A number is rational number if and only if it can be expressed as finite decimal or repeating decimal. A irrational number is defined by non-repeating infinite decimal in 9-th grade. There are misconceptions about a non-repeating infinite decimal. Although 1.4532954$\cdots$ is neither a rational number nor a irrational number, many high school students determine 1.4532954$\cdots$ is a irrational number and 0.101001001$\cdots$ is a rational number. The cause of misconceptions is the definition of a irrational number defined by non-repeating infinite decimals. It is a cause of misconception about a irrational number that a irrational number is defined by a non-repeating infinite decimals and the method of using symbol dots in infinite decimal is not defined in text books.

  • PDF

A Thought on Dealing with Repeating Decimals and Introducing Irrational Numbers (in the Middle School Mathematics) (중학교에서 순환소수 취급과 무리수 도입에 관한 고찰)

  • 김흥기
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.1
    • /
    • pp.1-17
    • /
    • 2004
  • According to the 7-th curriculum, irrational number should be introduced using repeating decimals in 8-th grade mathematics. To do so, the relation between rational numbers and repeating decimals such that a number is rational number if and only if it can be represented by a repeating decimal, should be examined closely Since this relation lacks clarity in some text books, irrational numbers have only slight relation with repeating decimals in those books. Furthermore, some text books introduce irrational numbers showing that $\sqrt{2}$ is not rational number, which is out of 7-th curriculum. On the other hand, if we use numeral 0 as a repetend, many results related to repeating decimals can be represented concisely. In particular, the treatments of order relation with repeating decimals in 8-th grade text books must be reconsidered.

  • PDF

On Explaining Rational Numbers for Extending the Number system to Real Numbers (실수로의 수 체계 확장을 위한 유리수의 재해석에 대하여)

  • Shin, Bo-Mi
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.2
    • /
    • pp.285-298
    • /
    • 2008
  • According to the 7th curriculum, irrational numbers should be introduced using infinite decimals in 9th grade. To do so, the relation between rational numbers and decimals should be explained in 8th grade. Preceding studies remarked that middle school students could understand the relation between rational numbers and decimals through the division appropriately. From the point of view with the arithmetic handling activity, I analyzed that the integers and terminating decimals was explained as decimals with repeating 0s or 9s. And, I reviewed the equivalent relations between irrational numbers and non-repeating decimals, rational numbers and repeating decimals. Furthermore, I suggested an alternative method of introducing irrational numbers.

  • PDF

Defining the Infinite Decimal without Using the 'Limit to a Real Number' ('어떤 실수로의 극한'을 사용하지 않고 무한소수를 정의하기)

  • Park, Sun Yong
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.2
    • /
    • pp.159-172
    • /
    • 2016
  • This study examines the approach of introduction of the real numbers through the infinite decimal, which is suggested by Lee Ji-Hyun(2014; 2015) in the aspect of the overcoming the double discontinuity, and analyses Li(2011), which is the mathematical background of the foregoing Lee's. Also, this study compares these construction methods given by Lee and Li with the traditional method using the nested intervals. As a result of analysis, this study shows that Lee Ji-Hyun(2014; 2015) and Li(2011) face the risk of the circulation logic in making the infinite decimal corresponding each point on the geometrical line, and need the steps not using the 'limit to a real number' in order to compensate the mathematical and educational defect. Accordingly, this study raises the opinion that the traditional method of defining the infinite decimal as a sequence by using the geometrical nested intervals axiom would be a appropriate supplementation.

The Meaning of the Definition of the Real Number by the Decimal Fractions (소수에 의한 실수 정의의 의미)

  • Byun Hee-Hyun
    • Journal for History of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.55-66
    • /
    • 2005
  • In our school mathmatics, the irrational numbers and the real numbers are defined and instructed on the basis of decimal fractions. In relation to this fact, we identified the essences of the real number and the irrational number defined by the decimal fractions through the historical analysis. It is revealed that the formation of real numbers means the numerical measurements of all magnitudes and the formation of irrational numbers means the numerical measurements of incommensurable magnitudes. Finally, we suggest instructional plan for the meaninful understanding of the real number concept.

  • PDF

Pre-Service Teachers' Understanding of the Concept and Representations of Irrational Numbers (예비교사의 무리수의 개념과 표현에 대한 이해)

  • Choi, Eunah;Kang, Hyangim
    • School Mathematics
    • /
    • v.18 no.3
    • /
    • pp.647-666
    • /
    • 2016
  • This study investigates pre-service teacher's understanding of the concept and representations of irrational numbers. We classified the representations of irrational numbers into six categories; non-fraction, decimal, symbolic, geometric, point on a number line, approximation representation. The results of this study are as follows. First, pre-service teachers couldn't relate non-fractional definition and incommensurability of irrational numbers. Secondly, we observed the centralization tendency on symbolic representation and the little attention to other representations. Thirdly, pre-service teachers had more difficulty moving between symbolic representation and point on a number line representation of ${\pi}$ than that of $\sqrt{5}$ We suggested the concept of irrational numbers should be learned in relation to various representations of irrational numbers.

Problems and Alternatives on Teaching for Repeating Decimal (순환소수 지도에서의 문제점과 해결방안)

  • Lee, Kang-Sup;Uhm, Gyu-Yeon
    • School Mathematics
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2007
  • The purpose of this study is searching for the problems and alternatives on teaching for repeating decimal. To accomplish the purpose, we have analyzed the fifth, sixth, and seventh Korean national curriculums, textbooks and examinations for the eighth grade about repeating decimal. W also have analyzed textbooks from USA to find for alternatives. As the results, we found followings. First, the national curriculums blocked us verifying the relation between rational number and repeating decimal. Second, definitions of terminating decimal, infinite decimal, and repeating decimal are slightly different in every textbooks. This leads seriously confusion for students examinations. The alternative on these problems is defining the terminating decimal as following; decimal which continually obtains only zeros in the quotient. That is, we have to avoid the representation of repeating decimal repeated nines under a declared system which apply an infinite decimal continually obtaining only zeros in the quotient. Then, we do not have any problems to verify the following statement. A number is a rational number if and only if it can be represented by a repeating decimal.

  • PDF

Beyond the Union of Rational and Irrational Numbers: How Pre-Service Teachers Can Break the Illusion of Transparency about Real Numbers? (유리수와 무리수의 합집합을 넘어서: 실수가 자명하다는 착각으로부터 어떻게 벗어날 수 있는가?)

  • Lee, Jihyun
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.3
    • /
    • pp.263-279
    • /
    • 2015
  • The introduction of real numbers is one of the most difficult steps in the teaching of school mathematics since the mathematical justification of the extension from rational to real numbers requires the completeness property. The author elucidated what questions about real numbers can be unanswered as the "institutional didactic void" in school mathematics defining real numbers as the union of the rational and irrational numbers. The pre-service teachers' explanations on the extension from rational to real numbers and the raison d'$\hat{e}$tre of arbitrary non-recurring decimals showed the superficial and fragmentary understanding of real numbers. Connecting school mathematics to university mathematics via the didactic void, the author discussed how pre-service teachers could break the illusion of transparency about the real number.

A Didactical Analysis of the Decimal fraction Concept (소수 개념의 교수학적 분석)

  • Woo, Jeong-Ho;Byun, Hee-Hyun
    • Journal of Educational Research in Mathematics
    • /
    • v.15 no.3
    • /
    • pp.287-313
    • /
    • 2005
  • The decimal fraction concept plays an important role in understanding the real number which is one of the major concepts in school mathematics. In the school mathematics of Korea, the decimal fraction is treated merely as a sort of name of the common fraction, while many other important aspects of the decimal fraction concept are ignored. In consequence students fail to understand the decimal fraction concept properly, and merely consider it as a kind of number for formal computation. Preceding studies also identified students' narrow understanding of the decimal fraction concept. But none of them succeeded in clarifying the essences of the decimal fraction concept, which are crucial for discussing the didactical problems of it. In this study we attempted a didactical analysis of the decimal fraction concept and disclosed the roots of didactical problems and presented measures for its improvement. First, we attempted a phenomenological analysis of the decimal fraction concept and extracted 9 elements of the decimal fraction concept. Second, we has analyzed of the essence of the decimal fraction concept more clearly by relating it to the situations where it functions and its representations. For this we tried to construct the conceptual field of the decimal fraction. Third, we categorized he developmental levels of the decimal fraction concept from the aspect of external manifestation of the internal order. On the basis of these results, we attempted hierarchical structuring of the elements of the decimal fraction concept. And using the results of such a didactical analysis on the decimal number concept we analyzed the mathematics curriculum and textbooks of our country, investigated levels of students' understanding of the decimal fraction concept, and disclosed related problems. Finally we suggested directions and measures for the improvement of teaching decimal fraction concept.

  • PDF