• Title/Summary/Keyword: 무토양 재배

Search Result 438, Processing Time 0.021 seconds

Changes in Inorganic Phosphorus Fractions in P Accumulated Plastic Film House Soils under Different Cropping Condition (인산축적 시설 재배지 토양에서 작물재배에 따른 무기태 인의 형태별 함량 변화)

  • Jin, Sheng-Ai;Lee, Sang-Mo;Choi, Woo-Jung;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.255-264
    • /
    • 2001
  • This study was conducted to investigate changes in inorganic phosphorus fractions in phosphorus accumulated plastic film house soils under cropping condition. Pot experiment was conducted with surface soils taken from plastic film house fields cultivated for 3, 8 and 16 years. Phosphorus fertilizer was applied at the rates of 0 (P0), $100kg\;ha^{-1}$ (recommended application rate. P1) and $200kg\;ha^{-1}$ (P2) as fused phosphate. Crops were grown sequentially in the order of corn-Chinese cabbage-Chinese cabbage-corn for 3 years. The content of easily soluble-P fraction was decreased with cropping. There were significantly positive relationship not only between the contents of easily soluble-P and the amounts of soil available P ($r=0.839^{**}{\sim}0.952^{**}$ for Bray-1 P, $r=0.895^{**}{\sim}0.967^{**}$ for Lancaster P, and $r=0.491^{**}{\sim}0.821^{**}$ for Olsen P), but also between the amounts of P absorbed by plants and the amounts of easily soluble P decreased ($r=0.644^{**}{\sim}0.822^{**}$). The decrease of easily soluble-P during cropping period could be described by a first-order reaction. The number of cropping times needed to decrease the content of easily soluble-P to an index level of $0.2mg\;kg^{-1}$, which is commonly reported as the desired concentration for soil P, was predicted in the range of 26~33 cropping times by using the equations. Regardless of P fertilization, the proportion of Al-P to total P was little varied during cropping period, but the proportion of Fe-P to total P increased with cropping. Although the content of Ca-P was high before cropping, the proportion of Ca-P to total P was increased with cropping. The proportion of reductant soluble-P to total P was little varied for P fertilizer treatment but was increased for no P fertilizer treatment. The residual-P was decreased during cropping period due to the absorption by crops and the conversion to other inorganic P fractions.

  • PDF

Soil Chemical Property and Microbial Community under Organic and Conventional Radish Farming Systems (무 유기재배와 관행재배 토양의 화학성과 미생물 군집 비교)

  • Kang, Ho-Jun;Yang, Sung-Nyun;Song, Kwan-Cheol;Cho, Young-Yuen;Kim, Yu-Kyoung
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.4
    • /
    • pp.479-499
    • /
    • 2019
  • This study was conducted to investigate the responses of soil properties and microbial communities to different agricultural management and soil types, including organic management in Andisols (Org-A), organic management in Non-andisols (Org-NA), conventional management in Andisols (Con-A) and conventional management in Non-andisols (Con-NA) by using a pyrosequencing approach of 16S rRNA gene amplicon in Radish farms of volcanic ash soil in Jeju island. The results showed that agricultural management systems had a little influence on the soil chemical properties but had significant influence on microbial communities. In addition, soil types had significant influences on both the soil chemical properties and microbial communities. Organic farming increased the microbial density of bacteria and biomass C compared to conventional farming, regardless of soil types. Additionally, Org-NA had the highest dehydrogenase activity among treatments, whereas no difference was found between Org-A, Con-A and Con-NA and had the highest species richness (Chao 1) and diversity (Phyrogenetic diversity). Particularly, Chao 1 and Phyrogenetic diversity were increased in organic plots by 12% and 20%, compared with conventional plots, respectively. Also, regardless of agricultural management and soil types, Proteobacteria was the most abundant bacterial phylum, accounting for 21.9-25.9% of the bacterial 16S rRNAs. The relative abundance of putative copiotroph such as Firmicutes was highest in Org-NA plot by 21.0%, as follows Con-NA (13.1%), Con-A (6.7%) and Org-A (5.1%.), respectively and those of putative oligotrophs such as Acidobacteria and Planctomycetes were higher in Con-A than those in the other plots. Furthermore, LEfSe indicated that organic system enhanced the abundance of Fumicutes, while conventional system increased the abundance of Acidobacteria, especially in Non-andisols. Correlation analysis showed that total organic carbon (TOC) and nutrient levels (e.g. available P and exchangeable K) were significantly correlated to the structure of the microbial community and microbial activity. Overall, our results showed that the continuous organic farming systems without chemical materials, as well as the soil types made by long-term environmental factors might influence on soil properties and increase microbial abundances and diversity.

Effects of Animal Manure Compost, Tillage Method and Crop System on Soil Properties in Newly Organic Corn Cultivation Field (신규 유기농 옥수수 재배 시 가축분 퇴비, 경운방법 및 작부체계가 토양 환경에 미치는 영향)

  • An, Nan-Hee;Lee, Sang-min;Cho, Jung-Rai;Nam, Hong-Sik;Jung, Jung-A;Kong, Min-jae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.31-43
    • /
    • 2018
  • This study was conducted to investigate the effects of organic farmland soil and nutrient management on soil properties depending on organic (animal manure compost and green manure [hairy vetch]) and chemical fertilization, tillage and no-tillage, and crop rotation (corn-wheat, corn-.hairy vetch). It was found that the application of organic matter such as animal manure compost and hairy vetch, increased the soil organic matter content, the soil microbial density and microbial biomass C content as compared with the chemical fertilizer treatment. It was also confirmed that the functional diversity of soil microbial community was increased. As a result of the comparison with the crop rotation and single cropping, the soil chemistry showed no significant difference between the treatments, but the corn-wheat and corn-hairy vetch rotation treatments tended to have higher microbial biomass C content and shannon's diversity index than the single cropping. Soil chemical properties of tillage and no-tillage treatments showed no significant difference between treatments. There was no statistically significant difference in substrate utilization of soil microbial community between tillage and no-tillage treatment. Correlation analysis between soil chemical properties and soil microbial activity revealed that soil organic matter content and exchangeable potassium content were positively correlated, with statistical significance, with substrate utilization, and substrate richness. To conclude, organic fertilization had positive effects on the short-term improvement of soil chemical properties and diversity of microbial communities.

Effects of Barley Straw Application and Tillage Method on Soil Physical Property and Soybean Yield in Paddy Field (논에서 콩 재배시 보릿짚 시용과 경운방법에 따른 토양 물리성과 수량)

  • Lee, Sang-Bok;Kim, Byong-Soo;Kang, Jong-Gook;Kim, Sun;Kim, Jai-Duk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.7
    • /
    • pp.593-598
    • /
    • 2006
  • This study was conducted to investigate the effect of tillage methods such as plowing and rotary tillage (PRT), rotary tillage (RTG), no-tillage after barley straw application (NTB), and barley straw mulching after plowing and rotary tillage (BPR) on the growth and the yield of soybean when cultivated after the cultivation of barley. The methods were compared with the control method in which plowing and rotary tillage after barley straw incineration was applied. Barley straw application resulted in increase in organic matter, total nitrogen, phosphate, and exchangeable cation regardless of tillage methods. Porosity and moisture level in paddy soil was ranked as follows : PRT > RTG > BPR > control > NTB. Decomposition rate of barley straw dramatically increased to 41.7% toward 30 days after soybean sowing, higher in NTB, DRB, and RTG than in BPR. Weed occurrence was decreased 36% in NTB and 40% in BPR. Root activity, nodulation and the dry weight per plant of soybean at flowering stage were highest in NTB and lowest in PRT. Soybean yield in NTB was 3,070 kg/ha increasing 19%, whereas that in PRT was not increased. Therefore in case of a frequent rain during the cultivation of soybean in paddy field PRT could result in excess moisture level in soil, the cultivation without tillage is desirable.

Recommendations of NPK Fertilizers based on Soil Testing and Yied Response for Radish in Highland (고랭지 무 재배지 토양검정에 의한 NPK 시비기준량)

  • Lee, Gye-Jun;Lee, Jeong-Tae;Zhang, Yong-Seon;Hwang, Seon-Woong;Park, Chol-Soo;Joo, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.167-171
    • /
    • 2009
  • An attempt was made to provide the most reasonable fertilizer recommendation for radish crop based on soil analysis data and yield response to the N, P, K fertilizers, which was obtained from field experiments on 2004 in highland, 850 meters above the sea level. Optimum times of NPK application to past application amount based on soil test were 0.90-0.77-0.50 for radish. The adjusted NPK recommendation models of highland soil were made by adding the application times to past application methods which were based on chemical properties of soil. The revised models for fertilizer application were recommended to decrease the amount of N, P, K by 10-23-50% for radish in highland. In application to total cultivation area, 2,546ha for radish, saving amounts of NPK fertilizers with these adjusted recommendation in comparison with past application levels will be 244.4 tons for radish. Using the optimal application amounts for radish, we will can reduce agricultural pollution without affecting crop yields.

Effects of Cultural Practices on Methane Emission in Tillage and No-tillage Practice from Rice Paddy Fields (논토양에서 경운 및 무경운재배시 재배방법별 메탄 배출 양상)

  • Ko, Jee-Yeon;Lee, Jae-Saeng;Kim, Min-Tae;Kang, Hang-Won;Kang, Ui-Gum;Lee, Dong-Chang;Shin, Yong-Gwang;Kim, Kun-Yeop;Lee, Kyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.4
    • /
    • pp.216-222
    • /
    • 2002
  • Field experiments were conducted to investigate the effect of various cultural practices on methane($CH_4$) emission in tillage and no-tillage practice in a clayey paddy soil from 1998 to 2000. The factors evaluated in tillage and no-tillage methods were types of nitrogen fertilizers, application method of chemical fertilizers, rice straw application and cultivation method. Of the nitrogen fertilizers, the amount of $CH_4$ emission in ammonium sulfate plot was the lowest, regardless of tillage and the application method. 26.4~41.1% of reduction by ammonium sulfate compared with urea. But in no-tillage which have problem of poor rice yield than tillage, coated urea was more effective nitrogen fertilizer because that showed similar $CH_4$ emission and highest rice yield at 80% of dosage of nitrogen. No-tillage plot emitted lower $CH_4$ than tillage plot where the fertilizers were incorporated. On the contrary, no-tillage plot showed a little higher $CH_4$ emission compared with tillage plot for the surface application. When rice straw was applied, no-tillage practice reduced methane emission by 26.6% compared with tillage practice, but showing a little difference of 10.7% in no application. With cultivation method, no-tillage practice reduced methane emission 26.6% compared with tillage for the 30-d-old seedling transplanting. But for the dry direct seeding practice, no-tillage was a less effective because considerable amounts of rice straw incorporated by tillage were more decomposed aerobically in the soil and emitted as $CO_2$ to the atmosphere with flooding in no-tillage soil.

Effect of microbial product on microorganisms in soil and growth of cabbage and tomato (미생물제재 처리에 의한 토양 미생물상의 변화 및 배추와 토마토의 생장에 미치는 영향)

  • 김지모;김철승;김현주;문병주;이재헌;이진우
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.515-522
    • /
    • 2002
  • Effect of the microbial product, which consisted of Bacillus coagulans DL-1 and rice bran, on the microorganisms in soil and growth of cabbage and tomato was investigated. Bacillus congulans DL-1 was isolated form the soil and identified in this study. Total number of microorganisms in the soil treated with the microbial product was higher than the untreated soil. The growth of cabbage and tomato on the soil treated with microbial product was faster than that on the untreated soil. The treatment of microbial product in the soil resulted in the increase of useful microorganisms, which seemed to enhance the growth of cabbage and tomato. It seemed that microbial product can increase the number of certain microorganisms and change the ratio of different species of microorganisms.

Comparison of Soil Properties and Non-point Pollution Effects According to Puddling and Non-puddling before Rice Transplanting in Paddy Field: Preliminary Research Data (논 벼 이앙 전 써레질 유무에 따른 토양환경 및 비점오염원 효과 비교: 예비 연구자료)

  • HyunKi Kim;Yun-Ho Lee;Hyun-Jin Park;Heon-Joong Kim;Hee-woo Lee;Jong-Tak Yoon;Jaeki Chang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.3
    • /
    • pp.191-198
    • /
    • 2024
  • Puddling before rice transplanting, which has been practiced traditionally, is no longer considered an essential process due to the overall development of agriculture. Non-puddling, a technique that omits rotary plow in a flooded condition after leveling and transplants immediately. In this study, we conducted the first case study in South Korea on the differences between puddling and non-puddling, and uploaded some of the data to Github. The effects of shortening and dispersing practices during the busy farming season, suppressing soil plow pan formation, and preventing non-point pollution emissions were confirmed in the early stages before and after transplanting. However, some limitations such as weed occurrence when lots of rain or water management practices fail, so it is recommended to implement non-puddling in irrigated paddy fields.

Soil Chemical Properties of Major Vegetable Producing Open Fields (주요(主要) 노지채소(露地菜蔬) 주산지(主産地) 토양(土壤)의 화학적(化學的) 특성(特性))

  • Hwang, Ki-Sung;Lee, Sung-Jae;Kwack, Yong-Ho;Kim, Ki-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.146-151
    • /
    • 1997
  • To get the basic information for the establishment of the optimum levels of upland soil fertility and fertilizer application, two hundred soil samples were collected from the major vegetable cultivation areas such as Chinese cabbage, reddish, garlic, onion, red pepper, watermelon and potato fields. The soil samples were analyzed for the soil chemical properties and micro elements. Soil pH, organic matter and magnesium contents were lower than the standard level for upland soil improvement, while the phosphate and potassium contents were higher than the standard levels. The organic matter and nitrogen contents were increased in the potato field soils, the available phosphate contents were increased in the red pepper field soils and the exchangeable potassium contents were increased in reddish and red pepper field soils, to compared with the past deta. The contents of micro elements were ranged in 14~282 for Fe, 13~98 for Mn, 0.5~2.8 for Cu and 0.6~5.0 mg/kg for Zn respectively, and they were in order of Fe>Mn>Zn>Cu.

  • PDF

Paddy Rice Growth Yield as Affedted by Incorporation of Green Barley and Chinese Milkvetch (자운영 및 보리 재배 혼입처리에 따른 벼의 생육과 수량)

  • Sohn, Bo-Kyoon;Cho, Ju-Sik;Lee, Do-Jin;Kim, Young-Ju;Jin, Seo-Young;Cha, Gyu-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.156-164
    • /
    • 2004
  • This study was conducted to evaluate the effect of the application of green manure in the form of either green barley and Chinese milkvetch in reducing the amounts of N fertilizers and conventional fertilizers needed for paddy rice. Prior to rice transplanting, the green barley and Chinese milkvetch as a green manure produced respectively $668kg\;10a^{-1}$ and 3,492kg\;$10a^{-1}$ in fresh shoot weight basis. Calculated nitrogen content from harvested green manures was 3.9 and $17.8kg\;10a^{-1}$, respectively. Plant height and tiller number of rice increased when two kinds of green manure incorporated into soil. Above mentioned parameters also increased with increasing amounts of N fertilizers at both ear formation and heading stage of rice. Rice grain number was not affected by green manures treatment but increased when N fertilizers were applied. Although rice panicle and grain number increased with green manure treatments and fertilizer applications, whereas the percentage of ripened grain decreased. Chinese milkvetch with additional N fertilizer applications increased brown rice yield from 1 to 5% compared to rice yields in plots where non-green manure with the conventional amount of fertilizer application was applied. Rice treated with Chinese milkvetch and 30% of the conventional N fertilizer rate yielded the same as rice fertilized conventionally. During the rice growing season, $NH_4-N$ content of paddy soil was higher in green manures treatment than non-green manure one. Average $NH_4-N$ content in paddy soil drastically decreased after heading stage below $5.7mg\;kg^{-1}$ in non-green manure treated plots. While on the other, $NH_4-N$ content in soil slowly decreased in plots those were treated with green manures at harvesting stage, average $NH_4-N$ content was still greater than $5.5mg\;kg^{-1}$. Nitrogen content of rice shoot and brown rice seed was higher in green manure treatment.