• Title/Summary/Keyword: 무요소법 기반 유한 요소

Search Result 12, Processing Time 0.028 seconds

Tracking of Evolving Solid-Fluid Interface Using Level set and MLS-based finite elements with variable nodes (MLS기반 변절점 유한요소 및 레벨셋 방법을 이용한 고체-유체 경계의 전산모사)

  • Lim, Jae-Hyuk;Cho, Young-Sam;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.416-418
    • /
    • 2004
  • Tracking of evolving solid-fluid interfaces is treated using level set method and MLS-based finite element with variable nodes. Several applications will be illustrated to demonstrate the effectiveness of the present scheme

  • PDF

The Stress Analysis of Structural Element Using Meshfree Method(RPIM) (무요소법(RPIM)을 이용한 구조 요소의 응력해석)

  • Han, Sang-Eul;Yang, Jae-Guen;Joo, Jung-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.311-319
    • /
    • 2007
  • A Meshfree is a method used to establish algebraic equations of system for the whole problem domain without the use of a predefined mesh for the domain discretization. A point interpolation method is based on combining radial and polynomial basis functions. Involvement of radial basis functions overcomes possible singularity Furthermore, the interpolation function passes through all scattered points in an influence domain and thus shape functions are of delta function property. This makes the implementation of essential boundary conditions much easier than the meshfree methods based on the moving least-squares approximation. This study aims to investigate a stress analysis of structural element between a meshfree method and the finite element method. Examples on cantilever type plate, hollow cylinder and stress concentration problems show that the accuracy and convergence rate of the meshfree methods are high.

Optimal Design of Piezoelectric transformer for High Efficiency and High Power density (고효율 고전력 밀도 압전 변압기의 최적 설계)

  • Seo, Jung-Moo;Joo, Hyun-Woo;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.46-48
    • /
    • 2004
  • 본 논문에서는 유한 요소법과 등가회로법을 이용하여 윤곽 진동형 압전 변압기의 특성을 해석하였으며 이를 통해 얻어진 결과를 기반으로 매칭 임피던스와 전기 및 기계적 결합 계수를 계산하였다. 전력 소자로서 사용되는 압전 변압기는 부하 등 특정 목적에 부합하는 정확한 설계가 필요하기 때문에 다중 목적 함수를 갖는 진화 전략을 이용하여 형상 최적화를 수행하였다.

  • PDF

Development of Micropump using Circular Lightweitht Piezo-composite Actuator (원형 경량 압전 복합재료 작동기를 이용한 마이크로 펌프의 개발)

  • 구옌탄텅;구남서
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.35-41
    • /
    • 2006
  • In this paper, we focus on improving the performance of the piezoelectric diaphragms of valveless micropumps. A circular lightweight piezoelectric composite actuator (LIPCA) with a high level of displacement and output force has been developed for piezoelectrically actuated micropumps. We used numerical and experimental methods to analyze the characteristics of the actuator to select optimal design. With the developed circular LIPCA, we fabricated a valveless micropump by photo-lithography and PDMS molding techniques. The displacement of the diaphragm, the flow rate and the back pressure of the micropump were evaluated and discussed. With a semi-empirical method, the flow rate with respect to driving frequency was predicted and compared with experimental one. The test results confirm that the circular LIPCA is a promising candidate for micropump application and can be used as a substitute for a conventional piezoelectric actuator diaphragm.

Construction Stage Analysis of Cable-Stayed Bridges Using the Unstrained Element Length Method (무응력길이법을 이용한 사장교의 시공단계 해석)

  • Park, Se Woong;Jung, Myung Rag;Min, Dong Ju;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.991-998
    • /
    • 2016
  • The propose of this study is to demonstrate how efficiently and accurately the construction stages of cable-stayed bridges are analyzed using the unstrained length method (ULM) in which all unstrained element lengths are determined from a simplified analytical method (Jung et al., 2015). A forward analysis of cable-stayed bridges using the commercial FEA program, MIDAS is sequentially carried out considering the lack of fit force but the ULM is able to analyze a intermediate construction stage directly by taking the corresponding unstrained lengths of the construction stage model simply. The closing load step analysis is achieved by loading the pavement and counter weight forces in reverse. An Incheon bridge model is analyzed using the present ULM and the commercial program, respectively, and the two analysis results are compared.

Analysis of Stress Concentration Problems Using Moving Least Squares Finite Difference Method(I) : Formulation for Solid Mechanics Problem (이동최소제곱 유한차분법을 이용한 응력집중문제 해석(I) : 고체문제의 정식화)

  • Yoon, Young-Cheol;Kim, Hyo-Jin;Kim, Dong-Jo;Liu, Wing Kam;Belytschko, Ted;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.493-499
    • /
    • 2007
  • The Taylor expansion expresses a differentiable function and its coefficients provide good approximations for the given function and its derivatives. In this study, m-th order Taylor Polynomial is constructed and the coefficients are computed by the Moving Least Squares method. The coefficients are applied to the governing partial differential equation for solid problems including crack problems. The discrete system of difference equations are set up based on the concept of point collocation. The developed method effectively overcomes the shortcomings of the finite difference method which is dependent of the grid structure and has no approximation function, and the Galerkin-based meshfree method which involves time-consuming integration of weak form and differentiation of the shape function and cumbersome treatment of essential boundary.

Shape Design Optimization of Crack Propagation Problems Using Meshfree Methods (무요소법을 이용한 균열진전 문제의 형상 최적설계)

  • Kim, Jae-Hyun;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.337-343
    • /
    • 2014
  • This paper presents a continuum-based shape design sensitivity analysis(DSA) method for crack propagation problems using a reproducing kernel method(RKM), which facilitates the remeshing problem required for finite element analysis(FEA) and provides the higher order shape functions by increasing the continuity of the kernel functions. A linear elasticity is considered to obtain the required stress field around the crack tip for the evaluation of J-integral. The sensitivity of displacement field and stress intensity factor(SIF) with respect to shape design variables are derived using a material derivative approach. For efficient computation of design sensitivity, an adjoint variable method is employed tather than the direct differentiation method. Through numerical examples, The mesh-free and the DSA methods show excellent agreement with finite difference results. The DSA results are further extended to a shape optimization of crack propagation problems to control the propagation path.

Electro-Fluid-Structural Interaction Simulation of a Valveless Micropump (시뮬레이션을 통한 무밸브 마이크로 펌프의 전기-유체-구조 상호작용에 대한 연구)

  • Li, Guang-Zhe;Goo, Nam-Seo;Han, Cheol-Heui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.7-13
    • /
    • 2008
  • In this paper, the pumping performance of a piezoelectric valveless micropump is simulated with a commercial finite element analysis software, COMSOL Multiphysics. The micropump developed in the previous work is composed of a 4-layer lightweight piezo-composite actuator (LIPCA), a polydimethylsiloxane (PDMS) pump chamber, and two diffusers. The piezoelectric domain, structural domain and fluid domain are coupled in the simulation. Water flow rates are numerically predicted for geometric parameters of the micropump. Based on this study, the micropump is optimally designed to obtain its highest pumping performance.

Numerical Analysis of Dynamic Response of Floating Offshore Wind Turbine to the Underwater Explosion using the PML Non-reflecting Technique (PML 무반사 기법을 이용한 부유식 해상풍력발전기의 수중폭발에 따른 동응답 수치해석)

  • Cho, Jin-Rae;Jeon, Soo-Hong;Jeong, Weui-Bong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.521-527
    • /
    • 2016
  • This paper is concerned with the numerical analysis of dynamic response of floating offshore wind turbine subject to underwater explosion using an effective non-reflecting technique. An infinite sea water domain was truncated into a finite domain, and the non-reflecting technique called the perfectly matched layer(PML) was applied to the boundary of truncated finite domain to absorb the inherent reflection of out-going impact wave at the boundary. The generalized transport equations that govern the inviscid compressible water flow was split into three PML equations by introducing the direction-wise absorption coefficients and state variables. The fluid-structure interaction problem that is composed of the wind turbine and the sea water flow was solved by the iterative coupled Eulerian FVM and Largangian FEM. And, the explosion-induced hydrodynamic pressure was calculated by JWL(Jones-Wilkins-Lee) equation of state. Through the numerical experiment, the hydrodynamic pressure and the structural dynamic response were investigated. It has been confirmed that the case using PML technique provides more reliable numerical results than the case without using PML technique.

A Study on Fire Performance of HPC Column with Fiber Cocktail in KS Fire Curve under Loading Condition (표준화재 재하조건에서 Fiber Cocktail을 혼입한 고강도 콘크리트 기둥의 강도별 화재거동에 관한 연구)

  • Kim, Heung-Youl;Chae, Han-Sik;Kim, Hyung-Jun;Jeon, Hyun-Kyu;Youm, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.377-380
    • /
    • 2008
  • The material and mechanical properties in the high temperature area of 40 to 100 MPa high strength concrete structural member was identified based on mixing of fiber cocktail and the structural element fire behavior simulation through the finite element analysis method (ABAQUS) was interpreted. The results are as follows. First, it was interpreted that the test specimen with concrete fiber cocktail mixed was more controllable in the maximum shrinkage than the one with concrete fiber cocktail not mixed the controllable range was about 25% to 55%. This means that shrinkage is controllable through mixing of fiber cocktail for the high strength concrete columns. Second, this study didn't consider the explosive spalling by the pore pressure within high strength concrete. If the properties for the pore pressure within high strength concrete is considered and database by strength and by inner temperature of various high strength concrete and steel materials are established in the future, it is interpreted that the technical foundation will be laid for performance based design of fire resistant construction.

  • PDF