• Title/Summary/Keyword: 목표슬럼프

Search Result 50, Processing Time 0.021 seconds

Chemical Resistance of Low Heat Cement Concrete Used in Wastewater Treatment Structures Built on Reclaimed Land (해안매립지 하수처리시설물에 적용한 저발열시멘트 콘크리트의 내화학성 평가)

  • Chung, Yongtaek;Lee, Byungjae;Kim, Yunyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.113-119
    • /
    • 2019
  • Concrete structures built on reclaimed land are combined with chemical erosion such as chlorine and sulfate ions from seawater. Chloride attack deteriorates the performance of the structure by corroding reinforcing bars. In addition, the waste water treatment structure has a problem that the concrete is deteriorated by the sulfate generated inside. Therefore, in this study, the characteristics and chemical resistance of low heat cement concrete used in wastewater treatment structures constructed on reclaimed land were evaluated. As a result of the experiment, the target slump and air content were satisfied under all the mixing conditions. The slump of low heat cement (LHC) concrete was higher than that of ordinary portland cement (OPC) concrete, while the air content of LHC concrete was smaller than that of OPC concrete with the same mix proportion. As a result of compressive strength test, OPC concrete showed higher strength at younger age compared to 28 days. In contrast, LHC concrete exhibited higher strength than OPC concrete at the age of 56 days. As a result of chlorine ion penetration tests, LHC-B concrete showed chlorine ion penetration resistance performance of the "very low" level at the age of 56 days. As a result of chemical resistance evaluation, when the LHC concrete is applied without epoxy treatment, chemical resistance is improved by about 18% compared to OPC concrete. In testing chemical resistance, the epoxy coated concrete exhibited less than 5% strength reduction when compared to sound concrete.

An Experimental Study on the Quality of Concrete with Municipal Solid Waste Incineration Ash (쓰레기 소각재 사용 콘크리트의 품질특성에 대한 실험적 연구)

  • Kim, Jae-Woo;Choi, Jae-Jin;Moon, Dae-Joong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.335-344
    • /
    • 2014
  • The Quality of municipal solid waste incineration ash (incineration ash) was analyzed for the purpose of the reusing for concrete material. The folwability and strength properties of concrete mixed with incinerator ash were investigated. CaO component was included more than 50% in chemical component of incinerator ash, mean size of 50% accumulated particle distribution of incinerator ash was about $25{\mu}m$. Particle shape of incinerator ash ($IA_1$) was massed the round shape with fine particle, particle shape of incinerator ash ($IA_2$) was piled up the sheet shape according to manufacture procedure. The Quality of concrete was effected by use of incinerator ash. When the incinerator Ash ($IA_2$) was used, slum of concrete was increased and dosage of high range water reducing agent was reduced. However, strength development of concrete was decreased. Dosage of high range water reducing agent was increased by combined use of incinerator ash ($IA_2$) and diatomite powder, but strength development of concrete was improved. Ratio of compressive strength and tensile strength was in the range 85%~105% of CEB-FIP model code.

Mix Design Procedure of Structural Concrete Using Artificial Lightweight Aggregates Produced from Bottom Ash and Dredged Soils (바텀애시 및 준설토 기반의 인공 경량골재를 활용한 구조용 콘크리트의 배합설계 절차)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • The objective of this study is to propose a reliable mixing design procedure of concrete using artificial lightweight aggregate produced from expanded bottom ash and dredged soil. Based on test results obtained from 25 mixes, empirical equations to determine water-to-cement ratio, unit cement content, and replacement level of lightweight fine aggregates were formulated with regard to the targeted performance (compressive strength, dry density, initial slump, and air content) of lightweight aggregate concrete. From the proposed equations and absolute volume mixing concept, unit weight of each ingredient was calculated. The proposed mix design procedure limits the fine aggregate-to-total aggregate ratio by considering the replacement level of lightweight fine aggregates, different to previous approach for expanded fly ash and clay-based lightweight aggregate concrete. Thus, it is expected that the proposed procedure is effectively applied for determining the first trial mixing proportions for the designed requirements of concrete.

Study on Hydration Heat Analysis of Pier Foundation-Column Using Low Heat Concrete (저발열 콘크리트를 사용한 교각 기초-기둥의 수화열 해석에 관한 연구)

  • Jeon, Joong-Kyu;Kim, Sun-Gil;Jeon, Chan-Ki;Kim, Ki-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.217-224
    • /
    • 2014
  • This study carried out to evaluate the hydration heat analysis and fundamental characteristics such as air content, slump and compressive strength for field application of low heat concrete with premixed cement. The results of experiment show that low heat concrete with premixed cement have sufficient performances on the workability and compressive strength. In addition, hydration heat analysis shows that low heat concrete with premixed cement make sure of target thermal cracking index. Therefore, it is desirable to apply the low heat concrete with premixed cement on pier foundation-column.

The Effect of Combinations of Electric Arc Furnace Slag and Lime Stone aggregates on Engineering Properties of Ultra High Strength Concrete with 80MPa (전기로 산화슬래그 잔골재와 석회암 골재의 조합사용이 80MPa급 초고강도 콘크리트의 공학적 특성에 미치는 영향)

  • Han, Min-Cheol;Moon, Byeong-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.253-260
    • /
    • 2017
  • The aim of research is to investigate various physical properties of ultra high strength concrete of 80MPa class using a combination of limestone aggregate and electronic arc furnace oxidizing slag aggregate. For aggregate combinations, granite and limestone are used for coarse aggregate, granite and limestone are also used for fine aggregate. And also, limestone fine aggregate is replaced by electronic arc furnace oxidizing slag aggregate of 25% and 50%. Test results indicated that flowability and compressive strength increased when limestone fine aggregate was used compared to that using granite fine aggregate due to higher modulus of elasticity by limestone. Also substitution of electronic arc furnace oxidizing slag aggregate resulted in a decrease of compressive strength slightly. It is found that the use of electronic arc furnace oxidizing slag aggregate and limestone aggregate would be favorable for reducing the autogenous shrinkage by as much as 9~25%.

Fundamental Evaluation and Hydration Heat Analysis of Low Heat Concrete with Premixed Cement (저발열형 Premixed Cement를 사용한 콘크리트의 기초물성 평가 및 수화열 해석에 관한 연구)

  • Yoon, Ji-Hyun;Jeon, Joong-Kyu;Jeon, Chan-Ki;Kim, Ki-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • This study carried out to evaluate the hydration heat analysis and fundamental characteristics such as air content, slump, compressive strength and dry shrinkage according to concrete with premixed cement, ternary concrete and OPC concrete for using concrete with premixed cement. The results of experiment are founded that concrete with premixed cement have sufficient performances such as workability, compressive strength and dry shrinkage. Also, the results of hydration heat analysis are founded that concrete with premixed cement have more performance than ternary concrete and OPC concrete at a point of view for the quality control such as thermal crack reducing and economic benefit. Therefore, it is desirable that concrete with premixed cement should be used to rise durability performance and convenience of maintenance.

Characteristics of Diffusion Coefficient of High Performance Concrete using GGBFS for Road Structures by Accelerating Test Method (슬래그 미분말 혼입률에 따른 도로구조물용 고성능 콘크리트의 압축강도 및 촉진 염소이온 확산 특성)

  • Han, Seong-Woo;Kim, Hong-Sam;Lee, Chan-Young;Cheong, Hai-Moon;Ahn, Tae-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.885-888
    • /
    • 2008
  • In recent years, the terminology "High-Performance Concrete(HPC)" has been introduced into the construction industry. Most high-performance concretes have a high cementitious content and a low water-cementitious material ratio. The proportions of the individual constituents vary depending on local preferences and local materials. Therefore, many trial batches are usually necessary before a successful mix is developed. The objective of this experiments is to investigate the fundamental properties of high performance concrete based binary cimentitious materials such as ordinary portland cement and ground granulated blast furnace slag. The results from the study will be utilized as the basic data and guideline in making standard mixproportions and the manufacture, construction work and quality control of HPC

  • PDF

Proposals for Revision of Lightweight Aggregate Concrete Specifications Based on In-situ Quality Control on Concrete (현장 품질관리를 고려한 경량골재 콘크리트의 시방서 개정안에 대한 고찰)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.211-218
    • /
    • 2018
  • This study examined the reliability and revision necessity of concrete standard specifications based on the comparisons with test data obtained by using domestic artificial lightweight aggregates and the contents specified in different foreign specifications including ACI 211.2, ACI 213, ACI 301, JASS 5 and CEB-FIP. To achieve the continuous particle distribution of domestic fine lightweight aggregates, the partial addition of natural sand with the maximum size of 2.5mm was required. To control the segregation and excessive bleeding in the fresh lightweight concrete, the current limitations on the water-to-binder ratio and unit water content need to be modified using lower values. In particular, a rational mixture proportion approach of lightweight concrete needs to be established for the targeted requirements of initial slump, 28-day compressive strength, air content and dry unit weight. Ultimately, significant revision of the concrete standard specifications is required considering the characteristics of domestic artificial lightweight aggregates.

Evaluation of Shrinkage Properties Based on Mock-Up Testin High Performance Concrete (Mock-Up 시험에 의한 고성능 콘크리트의 수축특성 분석)

  • Han, Cheon-Goo;Kang, Su-Tae;Koh, Kyung-Taek;Hann, Chang-Pyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.106-114
    • /
    • 2006
  • This paper investigates the fundamental properties and shrinkage characteristics of low shrinkage high performance concrete(LSHPC), using mock-up specimens. According to the test results, the most suitable mix proportions of LSHPC need a higher dosage of SP agent and AE agent, in order to obtain the target of slump flow and air content. This is due to reduce fluidity and air content respectively. It also presented earlier setting time than control concrete by 6 hours and exhibited compressive strength of 60MPa at age 28 days. Autogenous shrinkage of LSHPC was the half of the value of control concrete. Drying shrinkage of center section of LSHPC showed similar tendency with autogenous shrinkage, because of no internal moisture movement, while surface section had larger drying shrinkage. The specimen with embedded reinforcing bar had smaller deformation owing to confinement of reinforcing bar.

Mix Proportions of Early-Strength Pavement Concrete Using Calcium Nitrate (질산칼슘 혼화재를 사용한 신속개방형 포장 콘크리트의 적정배합비 도출)

  • Won, Jong Pil;Lee, Si Won;Lee, Sang Woo;Park, Hae Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.95-100
    • /
    • 2009
  • This study proposed mix proportions of early strength pavement concrete for large size area using calcium nitrate. Therefore, we used type III cement with calcium nitrate. Laboratory tests conducted to air content, slump loss test, setting time test, compressive strength test and flexural strength test. Our early strength pavement concrete mixture proportion proposed in this study for large size area attained the required compressive strength of 21 MPa and a flexural strength of 3.8 MPa, which allowed it to be opened to traffic within 8 hours. Based on test results, we suggested optimum mix proportions of early strength pavement concrete for large size area using calcium nitrate.