• Title/Summary/Keyword: 모섬유

Search Result 895, Processing Time 0.03 seconds

Development of Strengthening Method Using the Vacuum Impregnation in RC Members (진공함침을 이용한 철근콘크리트 부재에서의 보강공법 개발)

  • Yi, Seong Tae;Song, Yeong Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.11-18
    • /
    • 2012
  • Deterioration and weakening is advanced in compliance with flowing of time and the change of environment in RC structures. Consequently, strength and serviceability decreases, finally, the life of infrastructure shortens and safety characteristics decreases. Accordingly, in this study, a new method to develop a strengthening method using the vacuum impregnation, which increases durability of the infrastructure occurred the safety reduction due to the performance degradation and increases the life of infrastructure by improving the durability compared to the existing method, was planned. For flexural tests, the maximum strength was a low-end order from high order as follows: (1) vacuum impregnation with 2 fold reinforcement, (2) fiber sheet 2 fold reinforcement, (3) vacuum impregnation with 1 fold reinforcement, (4) fiber sheet 1 fold reinforcement, and (5) nothing. Also, for confirmation results about durability, when the fiber reinforcement is being exposed to the inferior environment, the remaining tensile strength exceeded of 90% or more for all environments. This is because the reinforcement used in this research shows the excellent resistance in severe environment.

Development of a Thermoplastic Composite Parabolic Antenna Reflector using Automated Fiber Placement Method (자동섬유적층법을 이용한 열가소성 복합재료 접시형 안테나 반사판 개발)

  • Kim, Jin-Bong;Kim, Tae-Wook
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.15-21
    • /
    • 2006
  • It is very difficult to make complex 3 dimensional curved-shape composite laminates using the advanced unidirectional composite prepregs. This study shows development process of subscale composite parabolic antenna reflector using unidirectional AS4/PEEK prepreg tapes. The AS4/PEEK thermoplastic composite materials are known to have good thermal and chemical stabilities in addition to their high specific strength and modulus. Various lamination methods were investigated through finite element analyses to make up the laminate design of the reflector. The automated fiber placement method was used to fabricate the reflector. The thermal expansion test using full-bridge strain gage circuits was done to verity the performance of the composite product.

Preparation of Polyacrylonitrile-based Carbon Nanofibers by Electrospinning and Their Capacitance Characteristics (전기방사에 의한 폴리아크릴로니트릴계 탄소나노섬유 제조와 커패시턴스 특성)

  • Park, Soo-Jin;Im, Se-Hyuk;Rhee, John M.;Park, Seong-Yong;Kim, Hee-Jung
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.205-212
    • /
    • 2007
  • In this work, polyacrylonitrile (PAN) fiber was prepared by electrospinning methods from dimethyl formamide solutions with various conditions, such as 8~20 kV applied voltage, 5~15 wt% PAN concentration, and 15 cm tip-to-collector distance (TCD). The nanofibers were stabilized by oxidation at $250^{\circ}C$ for 1 h, and then subsequently carbonized at $800{\sim}1000^{\circ}C$ for 1 h. The structured characteristics of the nanofibers before and after carbonization were studied by Fourier transform infrared spectroscopy. The resulting diameter distribution and morphologies of the nanofiber were evaluated by scanning electron microscope analysis. The electrochemical behaviors of the nanofiber were observed by cyclic voltammetry tests. From the results, the diameter of electrospinning nanofibers was predominantly influenced by the concentration of polymer solution and the applied voltage. The average diameter of the fibers was decreased with increasing the polymer concentration up to 10wt%. It was also found that the nanofibers with uniform diameter distribution and fine diameter could be achieved at 15kV input voltage and 15 cm TCD.

Isolation and Characterization of Cellulolytic Anaerobic Fungi from the Guts of the Hanwoo Cattle and the Korean Native Goat (한우 및 산양의 장내 섬유소 분해 혐기 곰팡이의 분리 및 특성 구명)

  • Kim, C.H.;Lee, S.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.1019-1030
    • /
    • 2003
  • The study was conducted to isolate and identify highly fibrolytic anaerobic fungi from the guts of a Hanwoo steer and a Korean native goat, and then investigate the characterization of cellulolytic activity of an anaerobic fungus. Twenty-one anaerobic fungal colonies were isolated in the study, in which 16 colonies were isolated from the rumen contents of the Hanwoo steer and 5 colonies from the duodenal fluids of the Korean native goat. Four anaerobic fungi were selected based on higher cellulolytic enzyme activities to identify under a optical microscope. NLRI-M003 and -T004 belong to Neocallimastix genus and NLRI-M014 belongs to Piromyces genus based on the morphology of their thallus, sporangia, rhizoid and the number of flagella. NLRI-M001 appeared to be an unknown strain of anaerobic fungi due to its different morphology from existing types of anaerobic fungi, though the morpholgoy is similar to Orpinomyces sp. Supplementation of 2% anaerobic fungal culture(NLRI-M003) in rumen-mixed microorganisms increased in vitro DM degradability of rice straw and filter paper up to 4 and 11%, respectively, compared with non-supplementation(control). CMCase and xylanase activities in in vitro culture were also higher in 2% fungal supplementation than controls in both rice straw and filter paper substrates.

규산나트륨을 이용한 졸-겔 구형 $SiO_2$ 나노졸 합성 연구

  • Gwon, Il-Jun;Park, Seong-Min;Kim, Myeong-Sun;Sim, Ji-Hyeon;Yeom, Jeong-Hyeon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.111-111
    • /
    • 2012
  • 나노테크놀로지는 종래의 가공으로는 얻기 힘들었던 섬유가공 효과를 간단하게 할 수 있는 기술이다. 현재 각국의 기능성 나노 가공제를 섬유에 응용하는 나노 테크놀로지는 현재 공업 생산되고 있는 면, 모, 견 등의 천연섬유 및 polyester, Nylon 등의 합성섬유의 원단에 적용하는 데서 출발하고 있다. 이러한 나노기술은 기존의 설비와 물을 사용하는 것이 큰 특징이고, 특별한 기계장치가 필요하지 않으며, 소규모의 실험장비만 있어도 현장투입이 가능한 나노입자의 제조가 가능하기 때문에 대량생산이 용이하고 설비투자는 원칙적으로 필요하지 않는다. 또한, 나노입자의 분산을 제대로 시키면 그 사이즈가 빛의 가시광선 영역의 파장(400~800nm)에 비해 절반 수준이하 크기의 입자가 대부분을 차지하기 때문에 염색성, 태의 변화가 적어 앞으로 더욱더 나노테크놀로지에 의한 가공이 확대될 것이 예상된다. 특히 유 무기 하이브리드 재료는 용액상태에서 제조되기 때문에 용액 코팅공정의 적용이 가능하여 다양한 코팅에 적극적으로 활용되고 있다. 또한 코팅공정 온도가 상대적으로 낮아서, 유기물의 기능성 발현이 용이하며, 섬유가공에 그대로 적용이 가능하고, 섬유고분자와 내구성 있게 직접 결합이 되어 실용성이 높다 할 수 있다. 또한 나노졸의 형성 시, 혹은 나노졸에 기능성 물질을 첨가함으로서 나노졸과 기능성 물질을 복합화하여 섬유상에 부여하는 것도 가능하다. 최근에 실리카졸의 형성과 성장에 관한 연구는 졸-겔 기술의 발전과 해석 및 상용화에 집중되어 있다. 규산나트륨과 황산 또는 염산을 사용하여 실리카를 생성하는 공정은 tetraethoxysilane (($Si(OC_2H_5)_4$, (TEOS))를 이용하여 합성하는 방법과 달리 대량의 실리카를 경제적으로 생산하는데 방법으로 널리 연구되고 있지만, 많은 연구가 수행되었음에도 불구하고 실리카 졸의 특성, 성장, 제조에 대한 충분한 이해가 이루어 지지 않고 있어, 아직까지 나노크기의 입자를 제조하는 공정에 대해서는 경제성, 효율성, 품질의 균일성이 떨어지는 것이 현실이다. 따라서 본 연구에서는 앞서 연구된 졸-겔 합성기술과 저렴한 원료인 규산나트륨을 이용하여 보다 간단하고 경제적인 방법으로 고부가가치의 다양한 실리카 나노졸을 제조할 수 있는 연구를 하고자 하였다. 이를 위해 규산나트륨 수용액의 특성, 핵 생성에 필요한 규산나트륨 수용액의 산화반응 특성, 그리고 출발용액의 졸겔 반응을 기초로 하여 실리카 졸 형성에 대한 반응물질의 혼합방법, 반응온도, 반응물의 농도, pH등이 최종 실리카 나노졸 제품의 입자 크기와 모양 등에 미치는 영향을 조사하려고 하며 이를 토대로 다양한 크기와 특성을 가진 실리카 나노졸을 제조하였다.

  • PDF

Poly(ethylene terephthalate) Nanocomposite Fibers with Thermally Stable Organoclays (내열성 유기화 점토를 이용한 폴리(에틸렌 테레프탈레이트) 나노복합체 섬유)

  • Jung, Min-Hye;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.518-525
    • /
    • 2007
  • The thermomechanical properties and morphologies of nanocomposite fibers of poly(ethylene terephthalate)(PET) incorporating thermally stable organoclays are compared. Dodecyltriphenyl-phosphonium-mica($C_{12}PPh-Mica$) and 1-hexadecane benzimidazole-mica ($C_{16}BIMD-Mica$) were used as reinforcing fillers in the fabrication of PET hybrid fibers. Dispersions of organoclays with PET were studied by using the in-situ polymerization method at various organoclay contents to produce nano-scale composites. The thermo-mechanical properties and morphologies of the PET hybrid fibers were determined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (XRD), electron microscopy (SEM and TEM), and a universal tensile machine (UTM). Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nano-scale, although some clay particles are agglomerated. We also found that the addition of only a small amount of organoclay is enough to improve the thermal stabilities and mechanical properties of the PET nanocomposite fibers. Even polymers with low organoclay content (<5 wt%) were found to exhibit much higher thermo-mechanical values than pure PET fibers.

Development of Suitable Alternative Substrates in Hydroponics of Sweet Pepper (착색단고추의 수경재배에 적합한 대체 배지 개발)

  • Bae, Jong-Hyang;Lee, Yong-Beom;Kim, Ho-Cheol;Cha, Seung-Hoon;Lee, Hye-Jin
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.138-142
    • /
    • 2008
  • To develop suitable alternative substrates in hydroponics of sweet pepper, changes of water contents of substrates and electric conductivity (EC) of drainage nutrient solution, growth and fruit characteristics according to the kind of coir substrates were investigated compared with rockwool. In all coir substrates compared with rockwool during growing period, water contents were higher, EC of drainage nutrient solution except for fiber 50% were lower, and the coefficient of variation were a little, especially were so in fiber 30% of coir substrates. Plant growth in fiber 30% substrate was better than others but there was no significant difference. Photosynthesis rate and chlorophyll content were best in fiber 50% substrate. Fruit weight was no significant difference, but LID ratio and shape of the fruits were good in fiber 50% substrate and rockwool as which were close to regular square. Therefore, it was estimated that mixed coir substrates with fiber $30{\sim}50%$ are enough in possibility as alternative substrate.

Manufacturing of Monodisperse Pectin Hydrogel Microfibers Using Partial Gelation in Microfluidic Devices (미세유체 장치에서 부분젤화법을 이용한 단분산성 펙틴 하이드로젤 미세섬유의 제조)

  • Jin, Si Hyung;Kim, Chaeyeon;Lee, Byungjin;Shim, Kyu-Rak;Kim, Dong Young;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.270-278
    • /
    • 2017
  • This study introduces a method to easily fabricate highly monodisperse pectin hydrogel microfibers in a microfluidic device by using partial gelation. The hydrodynamic parameters between the pectin aqueous solution and the calcium ions containing oil solution are precisely controlled to form a stable elongation flow of the pectin aqueous solution, and partial gelation of the pectin aqueous solution is performed by the chelating of the calcium ions at the interface between the two phases. The partially gelled pectin aqueous solution is phase-separated from the oil solution in an aqueous calcium chloride solution outside the microfluidic device and is completely gelled to produce monodisperse pectin hydrogel microfibers. The thickness of the pectin hydrogel microfiber is controlled in a reproducible manner by controlling the volumetric flow rate of the initially injected pectin aqueous solution. The pectin hydrogel microfibers were 200 to 500 micrometers in diameter and had a coefficient of variation below 5% under all thickness conditions, indicating that the pectin hydrogel microfibers produced by partial gelation are highly monodisperse. In addition, biomaterials can be immobilized to the pectin hydrogel microfibers produced by a single process, demonstrating the possibility that our pectin hydrogel microfiber can be used as carriers for biomaterials or tissue engineering.

The Material Analysis and Conservation Treatment of Six Modern Korean Calligraphic Painters' Collaborated Works of Folding Screen: Focused on 'Sansu' (근대 서화가 6인 합작 '산수' 병풍의 재질분석 및 보존처리)

  • Park, So Hyun;Choi, Hye Song;Kim, Jung Heum;Choi, Jeom Bok;Lee, Na Ra
    • Journal of Conservation Science
    • /
    • v.34 no.5
    • /
    • pp.319-331
    • /
    • 2018
  • The collection of the National Museum of Modern and Contemporary Art, Korea, features a sansu folding screen that was created in 1940 to commemorate the sixtieth birthday of Soseok Kang Jin-Koo. It was created by six oriental painters, who were among the ten best painters in that era. The folding screen has been previously repaired and restored; however, owing to damage such as twisting of its wooden frame, abrasion, and moisture stains, rigorous conservation treatment is required. Hence, scientific research was conducted to analyze the textile, paper and pigments employed while creating the folding screen, to identify the associated material properties. Results showed that the textile used in the screen's picture and janghwang comprise synthetic fibers and natural fibers such as cotton and silk. Various types of papers were used in the folding screen, such as those from mulberry, herbaceous, and coniferous fibers. Furthermore, calcite deposits were found on the base of every picture, and certain colors employed by the artists appear to be produced from different pigments.

Effects of Recombinant Human Epidermal Growth Factor on the Proliferationand Radiation Survival of Human Fibroblast Cell Lines in Vitro (재조합 표피성장인자가 방사선이 조사된 섬유아세포 증식에 미치는 영향)

  • Kim, Hyun-Sook;Kang, Ki-Mun;Lee, Sang-Wook;Na, Jae-Boem;Chai, Gyu-Young
    • Radiation Oncology Journal
    • /
    • v.24 no.3
    • /
    • pp.179-184
    • /
    • 2006
  • [ $\underline{Purpose}$ ]: To explore the effect of recombinant human EGF on the proliferation and survival of human fibroblast cell lines following irradiation. $\underline{Materials\;and\;Methods}$: Fibroblast was originated human skin and primary cultured. The trypan blue stain assay and MTT assay were used to study the proliferative effects of EGF on human fibroblast cell lines in vitro. An incubation of fibroblasts with rhEGF for 24 hours immediately after irradiation was counted everyday. Cell cycle distributions were analyzed by FACS analysis. $\underline{Results}$: Number of fibroblast was significantly more increased rhEGF (1.0 nM, 10 nM, 100 nM, 1,000 nM) treated cell than control after 8 Gy irradiation. Most effective dose of rhEGF was at 160 nM. These survival differences were maintained at 1 week later. Proportion of S phase was significantly increased on rhEGF treated cells. $\underline{Conclusion}$: rhEGF cause increased fibroblast proliferation following irradiation. We expect that rhEGF was effective for radiation induced wound healing.