Browse > Article

Preparation of Polyacrylonitrile-based Carbon Nanofibers by Electrospinning and Their Capacitance Characteristics  

Park, Soo-Jin (Department of Chemistry, Inha Univ.)
Im, Se-Hyuk (Advanced Materials Division, Korea Research Institute of Chemical Technology)
Rhee, John M. (Department of Advanced Organic Materials Engineering, Chonbuk National Univ.)
Park, Seong-Yong (Kyungwon Enterprise Co.)
Kim, Hee-Jung (Kyungwon Enterprise Co.)
Publication Information
Applied Chemistry for Engineering / v.18, no.3, 2007 , pp. 205-212 More about this Journal
Abstract
In this work, polyacrylonitrile (PAN) fiber was prepared by electrospinning methods from dimethyl formamide solutions with various conditions, such as 8~20 kV applied voltage, 5~15 wt% PAN concentration, and 15 cm tip-to-collector distance (TCD). The nanofibers were stabilized by oxidation at $250^{\circ}C$ for 1 h, and then subsequently carbonized at $800{\sim}1000^{\circ}C$ for 1 h. The structured characteristics of the nanofibers before and after carbonization were studied by Fourier transform infrared spectroscopy. The resulting diameter distribution and morphologies of the nanofiber were evaluated by scanning electron microscope analysis. The electrochemical behaviors of the nanofiber were observed by cyclic voltammetry tests. From the results, the diameter of electrospinning nanofibers was predominantly influenced by the concentration of polymer solution and the applied voltage. The average diameter of the fibers was decreased with increasing the polymer concentration up to 10wt%. It was also found that the nanofibers with uniform diameter distribution and fine diameter could be achieved at 15kV input voltage and 15 cm TCD.
Keywords
polyacrylonitrile; carbon nanofibers; electrospinning; carbonization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 P. J. Barham and A. Keller, J. Mat. Sci., 20, 2281 (1985)   DOI   ScienceOn
2 D. H. Reneker, A. L. Yarine, H. Fong, and S. Koombhongse, J. Appl. Phys., 909, 876 (2000)
3 Y. M. Shin, M. M. Hohman, and G. C. Rutledge, Appl. Phys. Lett., 78, 149 (2001)
4 H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999)
5 C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer, 40, 7397 (1999)
6 J. J. Lee and Y. C. Kim, J. Korean Ind. Eng. Chem., 17, 532 (2006)
7 S. H. Park, C. Kim, J. I. Jo, W. J. Lee, and K. S. Yang, Appl. Chem., 8, 167 (2004)
8 S. Kim, M. H. Cho, and S. J. Park, J. Korean Ind. Eng. Chem., 17, 16 (2006)
9 J. Deitzel, N. C. Beak Tan, J. D. Kleinmeyer, J. Rehrmann, D. Tevault, D. H. Reneker, I. Sendijarevic, and A. McHugh, Army Research Laboratiry Report ARL-TR-1999 (1999)
10 S. B. Warner, A. Buer, S. C. Ugbolue, G. C. Rutledge, and M. Y. Shin, Project M98-D01, National center annual Reports, P. 83 (1998)
11 B. E. Conway, Electrochemical Supercapacitors, Kluwer Academic and Plenum Publishers, New York (1999)
12 C. J. Buchko, K. M. Kozloff, and D. C. Martin, Biomaterials, 22, 1289 (2001)   DOI   ScienceOn
13 T. Y. Kim, I. H. Baek, Y. D. Jeoung, and S. C. Park, J. Ind. Eng. Chem., 9, 254 (2003)
14 C. Kim and K. S. Yang, Carbon Sci., 3, 210 (2002)
15 C. Kim, Y. O. Choi, W. J. Lee, and K. S. Yang, Electrochem. Acta., 50, 878 (2004)
16 J. R. Dees and J. E. Spruiell, J. Appl. Polym. Sci., 18, 1053 (1974)   DOI
17 Y. J. Cho, D. R. Chang, G. S. Heo, and C. N. Choi, Appl. Chem., 9, 5 (2005)
18 A. Formhals, US Patent 1, 975, 504 (1934)
19 G. I. Taylor, Proc. Royal Soc. Lond.(A), 280, 383 (1964)
20 C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, polymer, 40, 7397 (1999)
21 K. Ohgo, C. Zhao, M. Kobayshi, and T. Asakura, Polymer, 44, 841 (2003)   DOI   ScienceOn
22 J. Doshi and D. H. Reneker, J. Electrost., 35, 151 (1995)
23 S. J. Park and B. J. Kim, Carbon Sci., 6, 257 (2005)
24 D. Lozano-Castell, D. Cazorla-Amors, A. Linares-Solano, S. Shiraishi, H. Kurihara, and A. Oya, Carbon, 41, 1765 (2003)
25 D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996)
26 J. M. Deitzel, W. Kosik, S. H. McKnight, N. C. Beak Tan, J. M. Desimone, and S. Crette, Polymer, 43, 1025 (2002)   DOI   ScienceOn
27 D. H. Reneker, W. Kataphinan, A. Theron, E. Zussman, and A. L. Yarin, Polymer, 43, 6785 (2002)   DOI   ScienceOn
28 M. G. Hajra, K. Mehta, and G. G. Chase, Sep. Purif. Technol., 30, 79 (2003)
29 G. Gryglewicz, J. Machnikowski, E. Lorenc-Grabowska, G. Lota, and E. Frackowiak, Electrochem. Acta., 50, 1197 (2005)
30 C. J. Bunhko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer, 40, 7397 (1999)
31 E. Frackowiak and F. Beguin, Carbon, 39, 937 (2001)   DOI   ScienceOn
32 M. Endo, Chemtech, 18, 568 (1988)
33 S. O. Kim, W. J. Shin, H. S. Cho, B. C. Kim, and I. J. Chung, Polymer, 40, 6443 (1999)
34 A. Nishino, J. Power Sources, 60, 137 (1996)
35 E. R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, and G. E. Wnek, J. Control. Release, 81, 57 (2002)   DOI   ScienceOn
36 J. S. Lee, J. K. Suh, J. S. Hong, C. H. Lee, and J. M. Lee, J. Ind. Eng. Chem., 10, 623 (2004)
37 J. S. Kim and D. H. Reneker, Polym. Eng. & Sci., 39, 849 (1999)
38 P. Gibson, H. Schreuder-Gibson, and D. Rivin, Colloids Surf. A:Physicochem. Eng. Asp., 187, 469 (2001)
39 J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, and N. C. Beck Tan, Polymer, 42, 8163 (2001)   DOI   ScienceOn