텍스트를 자연어 처리를 위한 모델에 적용할 수 있게 언어적인 특성을 반영해서 단어를 수치화하는 방법 중 단어를 벡터로 표현하여 나타내는 워드 임베딩은 컴퓨터가 인간의 언어를 이해하고 분석 가능한 언어 모델의 필수 요소가 되었다. Word2vec 등 다양한 워드 임베딩 기법이 제안되었고 자연어를 처리할 때에 감성 분류는 중요한 요소이지만 다양한 임베딩 기법에 따른 감성 분류 모델에 대한 성능 비교 연구는 여전히 부족한 실정이다. 본 논문에서는 Emotion-stimulus 데이터를 활용하여 7가지의 감성과 2가지의 감성을 5가지의 임베딩 기법과 3종류의 분류 모델로 감성 분류 학습을 진행하였다. 감성 분류를 위해 Logistic Regression, Decision Tree, Random Forest 모델 등과 같은 보편적으로 많이 사용하는 머신러닝 분류 모델을 사용하였으며, 각각의 결과를 훈련 정확도와 테스트 정확도로 비교하였다. 실험 결과, 7가지 감성 분류 및 2가지 감성 분류 모두 사전훈련된 Word2vec가 대체적으로 우수한 정확도 성능을 보였다.
현재 국내외 CCTV 구축량 증가로 사생활 침해와 높은 설치 비용등이 문제점으로 제기되고 있다. 따라서 본 연구는 Early Fusion을 적용한 위급상황 음향 분류 모델을 제안한다. 음향 데이터에 STFT(Short Time Fourier Transform), Spectrogram, Mel-Spectrogram을 적용해 특징 벡터를 추출하고 3차원으로 Early Fusion하여 ResNet, DenseNet, EfficientNetV2으로 학습한다. 실험 결과 Early Fusion 방법이 가장 좋은 결과를 보였고 DenseNet, EfficientNetV2가 Accuracy, F1-Score 모두 0.972의 성능을 보였다.
본 논문은 지표면 현상의 관측에 날씨의 영향을 거의 받지 않는 마이크로파 L-밴드(1.95 GHz)와 C-밴드(5.3 GHz) scatterometer 시스템을 이용하여 농업과학기술원 내의 논에서 자라는 추청벼를 대상으로 2006년 5월 29일부터 10월 9일까지 생육에 따른 군락의 후방산란계수를 관측한 데이터와 작물의 생육과의 관계를 살펴보고 또한,측정 시스템의 개요,측정 시스템의 보정 방법들을 기술하고자 한다. Scatterometer 시스템의 송 수신기로 HP 8753D 벡터 네트워크 분석기를 사용하며,타워 위에 안테나를 설치하여 3.4 m의 높이에서 측정하도록 하였다. L-밴 드와 C-밴드 scatterometer는 VV-, VH-, HV-, HH-편파를 측정하여 fully polarimetric한 데이터를 얻도록 설계된 레이더시스템으로 입사각을 $30^{\circ}{\sim}60^{\circ}$에서 $10^{\circ}$간격으로 각각 30개의 독립적인 샘플을 측정하여 통계적으로 후방산란계수를 얻었다. 타워에서 발생하는 전파 잡음과 안테나 패턴의 부엽에 의한 지면에서의 수직반사(coherent 성분) 전파를 제거하기 위해 네트워크 분석기의 time gating 기능을 사용하며,55 cm 크기의 trihedral 전파반사기를 보정용 반사기로 사용하고, STCT(single target calibration technique) 방법을 이용하여 시스템을 보정하였다. 측정 결과를 분석하여 주파수, 입사각도, 편파의 변화에 대한 벼의 후방산란 특성과 벼의 생육상태과의 관계를 살펴보았다. L-밴드와 C-밴드 모두 벼의 생육과 밀접한 결과를 나타내었으나,입사각이 작을 때는 C-밴드와의 상관이 높게 나타났고 입사각이 커질수록 L-밴드와의 상관이 높게 나타났다. 편파는 L-밴드 와 C-밴드 모두 hh 편파가,입사각은 50도에서 가장 생육의 변이를 잘 설명하는 것으로 나타났다. 생육 데이터 모두를 이용한 경우보다는 유수형성기 또는 출수기 등 벼 생육의 질적인 변화를 보이는 시기에 따라 나누어 분석하는 것이 변화추이를 더 잘 설명하는 것으로 나타났다.
기지국이 사용자 간의 채널 상태 정보를 완벽하게 알고 있는 가정 하에서, 기존의 상향링크 셀룰러 시스템에서의 간섭 정렬 (IA) 방식은 인접 셀 간섭 채널을 임의로 설정된 참조 벡터로 모두 정렬시킴으로써 셀 간 간섭 (ICI) 을 완벽히 제거할 수 있다. 하지만, 현실적으로 사용자와 기지국 간의 채널 상태 정보의 교환은 제한된 궤환 채널에 의해 이루어지고 그 결과 궤환 오류에 의한 잔여 ICI 의 발생은 시스템 성능 저하에 큰 영향을 미친다. 본 논문에서는 이러한 잔여 ICI 를 최소화 할 수 있는 IA을 위한 최적화된 참조 벡터의 설계를 제안하고자 한다. 다음으로, 잔여 ICI의 최소화 뿐 만 아니라 기지국과 사용자 간의 요구 신호 (Desired signal) 세기의 최대화도 동시에 고려하는 반복적 연산 구조의 IA 기반 송수신기 설계 기법을 제안한다. 또한, 제안된 IA 알고리즘들과 연동된 사용자 스케줄링 기법을 제시함으로써 ICI를 효율적으로 제거함과 동시에 다중사용자 다양성 이득을 획득할 수 있도록 한다. 마지막으로, 이론적 분석 및 실험 결과를 통하여 기존의 IA 방식과 비교하여 제안된 IA 방식이 간섭 제한 영역에서 높은 성능을 나타냄을 확인할 수 있다.
본 논문에서는 디지털 비디오 인코딩 과정에서 인트라 프레임의 DC 성분과 인터 프레임의 움직임 벡터를 이용한 저작권 보호를 위한 디지털 비디오 화면 모호화 기법을 제안한다. 제안한 기법은 저주파 영역과 중간 주파수 영역에 민감한 반응을 보이는 HVS (human visual system)의 특성을 고려한 방법으로서, 영상의 주요 정보를 포함하는 인트라 프레임의 DC 계수와 윤곽선 움직임 정보를 포함하는 인터 프레임의 움직임 벡터의 부호를 인증 신호와 XOR 연산하여 신호를 왜곡시키고, 적합한 인증 신호를 적용한 경우에만 정상적인 화면을 볼 수 있도록 하는 기법이다. 실험은 제안한 기법을 적용한 비디오의 PSNR을 구하고, PSNR에 의해 정상적인 기능 여부를 알아본다. 실험 결과, 디코더에서 적합한 인증 신호를 적용한 경우 Y, U, V PSNR이 모두 극치 값을 나타냄으로써 원 압축 비디오와 같은 화질임을 알 수 있었고, 인증 신호를 적용하지 않은 경우 원 압축 비디오에 대한 평균 PSNR이 12.25dB을 나타냄으로써 화질 차이가 큼을 알 수 있었다. 결과로부터, 디지털 비디오 화면 모호화 기법은 정상적으로 기능하였고, 서명 또한 저작권자의 비밀 키에 의해 정상적으로 검출되어 저작권을 증명할 수 있었다.
본 논문은 패널 단위근, 패널 공적분, 패널 인과성 검정, 패널 FMOLS(fully modified OLS) 기법을 이용하여 한국의 대 동아시아 수출 결정요인을 분석하였다. 분석결과 변수들이 패널 단위근 검정을 통하여 단위근을 가지며 1차 차분 후 안정적인 자료로 전환됨을 알 수 있었으며, 패널 공적분 통계량 모두 공적분 관계가 존재하지 않는다는 귀무가설을 기각함으로써 적어도 하나의 공적분 벡터가 존재함을 알 수 있었다. 다음으로 패널 벡터오차수정모형을 도입하여 동태적 인과성 분석을 실시하였다. GDP변동이 수출변동에 영향을 미치고 수출변동이 GDP변동에 영향을 미침으로써 수출과 GDP 간에 쌍방적 인과관계가 존재함을 알 수 있었다. 그리고 ODI변동의 오차수정항 계수가 수출변동의 오차수정항 계수보다 약 1.65배 크게 나타나 ODI의 불균형에서 균형으로 조정속도가 수출보다 1.7배 정도 빠름을 확인할 수 있었다. 이와 더불어 패널 GM FMOLS 결과 환율이 1% 상승했을 때 수출이 0.28% 감소하고, GDP가 1% 증가했을 때 수출은 0.77% 증가하고, 해외직접투자가 1% 증가했을 때 수출은 0.11% 증가함을 알 수 있었다.
본 연구에서는 디지털워터마킹 방법을 이용하여 디지털 지적도면의 불법유통과 불법복제 등을 방지할 수 있는 대책을 마련하여 보고자 하였다. 이를 위해 기존 연구의 워터마킹 방법을 토대로 지적도면의 특성에 적합하도록 디지털 워터마킹 방법을 개발하고, 이에 대한 성능을 평가하여 보았다. 연구결과, 기존 연구성과를 토대로 워터마크키와 일방함수를 이용하여 알고리즘을 보완함으로써 워터마킹의 보안성을 강화하였다. 또한 충실도, 강인성, 긍정적 오류율을 모두 만족시키는 동시에 위상 관계 역시 변화가 없는 것으로 나타났다. 본 연구에서 제시하는 방법은 지적도면 뿐만 아니라 GIS, 네비게이션 데이터와 같은 벡터데이터에도 이용 가능하도록 개선하였기 때문에 향후 방법론에 대한 추가적인 보완을 통한다면 보다 광범위하게 이용될 수 있을 것으로 기대한다.
전문가의 지식을 기반으로 한 추천시스템에 대한 다양한 연구가 최근 활발히 진행되고 있다. 지금까지의 전문가 기반 추천 시스템이 공통된 전문가 그룹의 지식을 바탕으로 모두에게 아이템을 추천하였다면, 본 논문에서는 개인의 필요와 전문가에 대한 관점을 반영한 개인화된 전문가 그룹의 지식을 기반으로 한 추천 시스템을 제안한다. 개인화된 전문가 그룹을 찾는 과정이 제안하는 추천 시스템에서 가장 중요한 부분이다. 이를 위해 개인화된 전문가를 효율적으로 찾아내는 지지 벡터 머신(SVM) 기반 기법을 제안한다. 추천 시스템에서 널리 사용되는 k 근접이웃 알고리즘과의 비교를 통하여서 개인화된 전문가를 기반으로 한 협업 필터링 추천 시스템의 효용성을 입증한다.
통계학습이론에 기반하고 있는 Support Vector Machine(SVM)은 구조적 위험 최소화원리를 바탕으로 하는 학습 알고리즘이다. 일반적으로SVM은 비선형 경계를 결정하고 자료를 분류하기 위해서 커널(kernel)을 사용한다. 그러나 기존의 커널들은 두 벡터간의 내적이나 거리차를 이용하여 유사도를 측정하기 때문에 하이퍼스펙트럴 영상분류에 효과적으로 적용될 수 없다. 본 논문에서는 이를 해결하기 위해서 분광유사도커널(Spectral similarity kernel)을 제안한다. 분광유사도 커널은 두 벡터의 거리차와 각 차이를 모두 계산하는 지역적 커널로 하이퍼스펙트럴 영상의 분광특성을 효과적으로 고려할 수 있다. 이를 검증하기 위해서 Hyperion 영상에 polynomial kernel, RBF kernel을 사용한 SVM 분류기와 분광유사도 커널을 사용한 SVM 분류기를 적용하여 토지피복분류를 시행하였다. 분류결과를 통해서 분광유사도 커널을 사용한 SVM 분류기가 정량적, 공간적으로 가장 우수한 결과를 보임을 확인하였다.
본 연구는 단어 패턴 중 유사한 특성의 정보에 기초를 둔 DMS(Dynamic Multi-Section) 모델을 제안한다. 이 모델은 각각의 단어를 몇 개의 구간(Section)의 시계열로 분할하고, 각각의 구간 모두에 지속 시간 정보와 구간을 대표하는 특징 벡터를 구간의 정보로 등록해 둔 것이다. 단어 패턴에서 모델을 작성하는 절차는 대표 특징 벡터와 지속 시간의 정보를 거리에 따라 반영하면서 단어 패턴과 모델과의 매칭을 반복하여 매칭에 의한 누적 거리가 최소로 되도록 하는 것이다. 제안된 음성 인식 실험을 수행하는 것 이외에도 비교를 위해 DP 방법, HMM 방법 및 MSVQ 방법에 의한 음성 인식 실험을 같은 조건하에서 같은 데이터로 수행하였다. 또한 제안된 DMS 모델을 이용한 음성 인식시에도 DMS/DP 방법에 의한 인식 및 DMS/VQ에 의한 인식률은 89.3%이다. 또한 DMS 모델을 이용한 DMS/DP에 의한 인식률은 95.8%이고, DMS/VQ에 의한 인식률은 96.8%이다. 그러므로, DMS 모델을 이용한 DMS/VQ 방법에 의한 인식이 일반적으로 많이 이용되고 잇는 DP 방법이나 HMM 방법 및 MSVQ 방법과 비교해 볼 때 인식률도 우수하며, 기억 용량 및 계산량도 감소되어, 본 연구에서 제안하는 DMS 모델의 유용성이 입증되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.