• Title/Summary/Keyword: 롤러 캠

Search Result 31, Processing Time 0.027 seconds

Pitting Life for RRP System (RRP 시스템의 피팅수명)

  • Kim, Chang-Hyun;Nam, Hyung-Chul;Kwon, Soon-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.387-393
    • /
    • 2012
  • A roller rack pinion (RRP) system, which consists of a rack-bar and a cam pinion, transforms a rotation motion into a linear one. The rack-bar has a series of roller trains, and meshes with the cam pinion. This paper first proposes the exact tooth profile of the cam pinion and the non-undercut condition to satisfy the required performance by introducing the profile shift coefficient. The paper then investigates the load stress factors under various shape design parameters to predict the gear surface fatigue limit, which was strongly related to the gear noise and vibration at the contact patch. The results show that the pitting life can be extended significantly with an increase in the profile shift coefficient.

Flash Temperature Analysis on the Contact Surfaces between Cam and Roller-Follower Mechanism (캠과 롤러 종동자 기구의 접촉표면 순간온도 해석)

  • Koo, Young-Pil;Kim, Min-Nam;Kim, Nam-Shik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.86-94
    • /
    • 2004
  • The flash temperature distribution on the contact surfaces between cam and roller-follower mechanism was analysed numerically. The elasto-hydrodynamic lubrication pressure and film thickness were used to get the accurate analysis results. The temperature distribution was obtained by numerical integration by making use of Carslaw and Jaeger's formulation to the whole contact surfaces. The maximum flash temperature was increased with both the increasing slip ratio of the contact surface and increasing external load Profile of the temperature distribution was affected by the sliding velocity of the surface.

  • PDF

Subsurface stress field beneath the cam-roller contact surface under elastohydrodynamic lubrication and tangential loading (탄성유체윤활 및 접선하중 상태에서 캠-롤러 접촉표면의 내부 응력장)

  • Kim Hyung-Ja;Kim Young-Dae;Park Kyung-Dong;Koo Young-Pil
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.261-268
    • /
    • 2004
  • For cam and roller-follower contacting surfaces, the effect of tangential loading on the subsurface stress field at an elaso-hydrodynamic lubrication condition has been studied numerically. As tangential load increases, the subsurface stress field extended more widely to the direction of the tangential load. The positions of the maximum shear stress and the maximum effective stress are getting closer to the surface with the increasing tangential load. The tangential load at the elasto-hydrodynamic lubrication condition is of little consequence to the subsurface stress field.

  • PDF

Contact Fatigue Life for RRG System (BRG 시스템의 접촉 피로수명)

  • Nam, Hyoung-Chul;Kim, Chang-Hyun;Kwon, Soon-Man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.95-101
    • /
    • 2012
  • An internal type roller ring gear(RRG) system composed of either a pin or a roller ring gear and its conjugated cam pinion can improve the gear endurance from that of a conventional gear system by reducing the sliding contact, while increasing the rolling motion. In this paper, we first proposed the exact cam gear profile and the self-intersection conditions obtained when the profile shift coefficient is introduced. Then, we investigated contact stresses and surface pitting life to fmd characteristics for surface fatigue by varying the shape design parameters. The results show that the pitting life can be extended significantly by increasing the profile shift coefficient.

Non-Steady Elastohydrodynamic Lubrication Analysis on the Cam-Roller of Valve Mechanism for a Marine Diesel Engine (박용디젤기관 밸브기구용 캠-롤러 사이의 비정상상태 탄성유체윤활해석)

  • 구영필;강민호;이득우;조용주
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.201-207
    • /
    • 2000
  • The numerical procedure to analyze a non-steady 3-dimensional elastohydrodynamic lubrication on the cyclically loaded contact has been newly developed. The procedure was applied on the cam-roller contact of the valve mechanism for the marine diesel engine. Both the pressure distribution and the film thickness between the cam and roller follower were calculated for each time step of the whole cycle. The pressure spike is shown at the outlet of the roller edge and it is getting higher as the external load is increased. The film thicknesses in the result of the non-steady analysis have a tendency to increase compared to those in the result of the analysis with the assumption of steady state. Therefore, the surface roughness of the non-steady contact need not be limited below that of the steady contact of the equivalent operating conditions.

A study on the Design of Drum Type Automatic Tool Changer (드럼형 자동공구교환장치의 설계에 관한 연구)

  • Choi, Hyun-Jin;Lee, Han-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.52-59
    • /
    • 2020
  • Automatic tool changers (ATCs) can be divided into drum and chain types. Drum-type ATCs contain a magazine, where the tools are mounted, and a cam gearbox, which swaps the tools via roller gear and grooved plate cams. Drum-type ATCs are advantageous in that the operating time for the tool magazine is more rapid than that of chain-type ATCs and the length of the unit is shorter. Thus, drum-type ATCs can be fabricated into various shapes and forms depending on the number of tools and the magazine size in accordance with machining center requirements and consumer demand. In particular, the price competitiveness of a machining center with a drum-type ATC is higher, while drum-type ATCs are more rigid with fewer parts, possibly reducing the need for regular servicing. This study aims to verify the structural stability and design validity of the magazine base, which is the main structure of a drum-type ATC, using finite element analysis. This study kinematically verifies the specifications of the selected drive motor and reducer and assessed the design of the cam gearbox. It also conducts a structural analysis of the roller camp, which is the core component of the cam gearbox, based on the results of the kinetodynamic analysis, thus validating the structural design.

A Study on the Development and Surface Roughness of Roller Cam SCM415 by 5-Axis Machining (5축 가공에 의한 SCM415 롤러 캠 개발과 표면조도 연구)

  • Kim, Jin Su;Lee, Dong Seop;Kang, Seong Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.397-402
    • /
    • 2013
  • In this study, we carried out the each lines of section, using GC (green silicon carbide) whetstone, the SCM415 material which separated by after and before heat treatments process, in 3+2 axis machining centers for integrated grinding after cutting end mill works, the spindle speed 8000 rpm and feed rate 150 mm/min. For the analysis of the centerline average roughness (Ra), we measured by 10 steps stages. Using Finite element analysis, we found the result of the load analysis effect of the assembly parts, when applied the 11 kg's load on both side of the ATC (Automatic tool change) arm. The result is as follows. For the centerline average roughness (Ra) in the non-heat treatment work pieces, are appeared the most favorable in the tenth section are $0.510{\mu}m$, that were shown in the near the straight line section which is the smallest deformation of curve. In addition, the bad surface roughness appears on the path is to long by changing angle, the more inclined depth of cut, because the chip discharging is not smoothly.

Design of Clutch Mechanism for Increased Actuator Energy Efficiency of Electrically Actuated Lower Extremity Exoskeleton (전기식 하지 외골격 로봇의 구동기 에너지 효율 향상을 위한 클러치 메커니즘 설계)

  • Kim, Ho Jun;Kim, Wan Soo;Lim, Dong Hwan;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.173-181
    • /
    • 2016
  • This paper reports on the development of a roller-cam clutch mechanism. This mechanism can transfer bidirectional torque with high backdrivability, as well as increase actuation energy efficiency, in electrical exoskeleton robots. The developed mechanism was installed at the robot knee joint and unclutched during the swing phase which uses less metabolic energy, thereby functioning as a passive joint. The roller-cam clutch aimed to increase actuation energy efficiency while also producing high backdrivability by generating zero impedance for users during the swing phase. To develop the mechanism, mathematical modeling of the roller-cam clutch was conducted, with the design having more than three safety factors following optimization. Titanium (Ti-6AL-4V) material was used. Finally, modeling verification was done using ANSYS software.

A Study on the Machining Characteristics of Prototype of Roller Gear Cams (롤러 기어 캠의 시제품 가공특성에 관한 연구)

  • Kim, Jin-Su;Kang, Seong-Ki;Lee, Dong-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.60-67
    • /
    • 2012
  • In the study, the effect grinding condition on the workpiece arithmetical average roughness(Ra) to 10 steps leading to cutting each section with the spindle rotational speed 8000rpm and feed rate 150mm/min of grinding in GC(green silicon carbide) grinding processing after heat treatment and non heat treatment of SCM415 material. Also the following conclusions were obtained analysis of stress distribution displacement and finite elements method(FEM) on assemble parts with 3+2 axis simultaneous control through grinding and gave a load 11kg on ATC arm both sides gave a load of 11kg. For the centerline average roughness(Ra) in the heat and non-heat treatment work pieces, which were appeared the most favorable in the fifth section were $0.511{\mu}m$ and $0.514{\mu}m$, that were shown in the near the straight line section was the smallest deformation of curve. In addition, the bad surface roughness appeared on the path is too long by changing angle, the more inclined depth of cut, because the chip discharging is not smoothly.

Study of 4-Axis Machining for Ball Gear Cam (볼기어캠의 4-축 가공에 관한 연구)

  • Cho, Hyun-Deog;Shin, Yong-Bum
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.81-87
    • /
    • 2019
  • The automatic tool changer of a machining center consists of a tool magazine and a cam box, and the core components of the cam box are a roller gear cam and a turret. Recently, the roller gear cam of a cam box has been replaced by a ball gear cam. In this study, the design and machining method of ball gear cam for an automatic tool changer was studied. Additionally, an algorithm for a 4-axis post processing method was established from an instrumental formula by designing a ball gear cam, thus preventing machining at the bottom of ball end mill and enabling the ball on the turret to be driven at the entrance and exit of a curve without collision due to machining errors. In conclusion, machining using only the 4-axis method including the C-axis on a BC -Type 5-axis machine produced the desired ball gear cam.