• Title/Summary/Keyword: 라이브러리 표준

Search Result 339, Processing Time 0.023 seconds

A Hardware Design of Ultra-Lightweight Block Cipher Algorithm PRESENT for IoT Applications (IoT 응용을 위한 초경량 블록 암호 알고리듬 PRESENT의 하드웨어 설계)

  • Cho, Wook-Lae;Kim, Ki-Bbeum;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1296-1302
    • /
    • 2016
  • A hardware implementation of ultra-lightweight block cipher algorithm PRESENT that was specified as a block cipher standard for lightweight cryptography ISO/IEC 29192-2 is described in this paper. Two types of crypto-core that support master key size of 80-bit are designed, one is for encryption-only function, and the other is for encryption and decryption functions. The designed PR80 crypto-cores implement the basic cipher mode of operation ECB (electronic code book), and it can process consecutive blocks of plaintext/ciphertext without reloading master key. The PR80 crypto-cores were designed in soft IP with Verilog HDL, and they were verified using Virtex5 FPGA device. The synthesis results using $0.18{\mu}m$ CMOS cell library show that the encryption-only core has 2,990 GE and the encryption/decryption core has 3,687 GE, so they are very suitable for IoT security applications requiring small gate count. The estimated maximum clock frequency is 500 MHz for the encryption-only core and 444 MHz for the encryption/decryption core.

A Design of Open GIS Compliant Object Web (개방형 GIS 표준에 따른 오브젝트 웹 시스템 설계)

  • Park, Ki-Ho;Jeong, Jae-Gon
    • Journal of Korea Spatial Information System Society
    • /
    • v.1 no.2 s.2
    • /
    • pp.47-62
    • /
    • 1999
  • To meet the interoperability requirements associated with geospatial data access and geoprocessing, much efforts to design prototypical systems conforming to $OpenGIS^{TM}$ specification has been made. With respect to Object Web GIS, however, current internet mapping technology mainly focuses on either developing mapping libraries or client applications regardless of the future needs for interoperability such as an integration of $OpenGIS^{TM}$ standard for CORBA. In this paper, we propose an $OpenGIS^{TM}$ compliant mapping kernel. OpenViews, which is designed to meet those requirements. The kernel of OpenViews encapsulates the process of acquiring geospatial data in the format of $OpenGIS^{TM}$ Geometry through ORB(Object Request Broker). OpenViews, being designed based on well-known design patterns, is a highly extensible in that programmers can easily customize it on the object oriented architecture. The components implemented in OpenViews are CORBA/Java objects, and as such are portable and scalable in a networked environment. A companion package, OpenBroker, is also developed as a portable geoprocessing application server to facilitate the implementation and configuration of server side CORBA objects. It can be used for implementing objects for spatial analysis service which would be independent of legacy spatial database systems in many cases. OpenViews, together with OpenBroker, has been successfully prototyped using the technologies including EJB and servlet as the core components of an Open GIS compliant internet mapping.

  • PDF

Development of EUC-KR based Locale and Application Program Supporting North Korean Collating Sequence (북한 한글 순서를 지원하는 EUC-KR 기반의 로캘과 응용 프로그램 개발)

  • Jung Il-dong;Lee Jung-hwa;Kim Yong-ho;Kim Kyongsok
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.875-884
    • /
    • 2004
  • UCS (=ISO/IEC 10646, =Unicode) will be used widely as globalization. If UCS is used for official purpose in Koreas, UCS solves a Problem in different hangeul code between South and North Korea. But, UCS is not a solution for problems in unequal order with the same character. IS0/1EC 146sl : 2000 (International String Ordering), which is a international standard for string ordering, defines a framework sorting all char-acter strings consisting multi-national scripts. Because the Common Template Table in ISO/IEC 14651 defines orders of characters, we can change orders of characters without changes of characters sequences in programs. Therefore, we can solve a ordering problem without unifying order of hangeul in South and North Korea. Functions related ISO/IEC 14651 are contained by system librarys in unix-based operating system such as Linux, Solaris and FreeBSD. We implement EUC-KR-based North Korean locale, which includes North Korean hangeul order, in Linux in order to use North Korean locale in South Korea. And we develop a program ordering strings with South and North Korean hangout order.

LDPC Decoder for WiMAX/WLAN using Improved Normalized Min-Sum Algorithm (개선된 정규화 최소합 알고리듬을 적용한 WiMAX/WLAN용 LDPC 복호기)

  • Seo, Jin-Ho;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.876-884
    • /
    • 2014
  • A hardware design of LDPC decoder which is based on the improved normalized min-sum(INMS) decoding algorithm is described in this paper. The designed LDPC decoder supports 19 block lengths(576~2304) and 6 code rates(1/2, 2/3A, 2/3B, 3/4A, 3/4B, 5/6) of IEEE 802.16e mobile WiMAX standard and 3 block lengths(648, 1296, 1944) and 4 code rates(1/2, 2/3, 3/4, 5/6) of IEEE 802.11n WLAN standard. The decoding function unit(DFU) which is a main arithmetic block is implemented using sign-magnitude(SM) arithmetic and INMS decoding algorithm to optimize hardware complexity and decoding performance. The LDPC decoder synthesized using a 0.18-${\mu}m$ CMOS cell library with 100 MHz clock has 284,409 gates and RAM of 62,976 bits, and it is verified by FPGA implementation. The estimated performance depending on code rate and block length is about 82~218 Mbps at 100 MHz@1.8V.

Bit-serial Discrete Wavelet Transform Filter Design (비트 시리얼 이산 웨이블렛 변환 필터 설계)

  • Park Tae geun;Kim Ju young;Noh Jun rye
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.336-344
    • /
    • 2005
  • Discrete Wavelet Transform(DWT) is the oncoming generation of compression technique that has been selected for MPEG4 and JEPG2000, because it has no blocking effects and efficiently determines frequency property of temporary time. In this paper, we propose an efficient bit-serial architecture for the low-power and low-complexity DWT filter, employing two-channel QMF(Qudracture Mirror Filter) PR(Perfect Reconstruction) lattice filter. The filter consists of four lattices(filter length=8) and we determine the quantization bit for the coefficients by the fixed-length PSNR(peak-signal-to-noise ratio) analysis and propose the architecture of the bit-serial multiplier with the fixed coefficient. The CSD encoding for the coefficients is adopted to minimize the number of non-zero bits, thus reduces the hardware complexity. The proposed folded 1D DWT architecture processes the other resolution levels during idle periods by decimations and its efficient scheduling is proposed. The proposed architecture requires only flip-flops and full-adders. The proposed architecture has been designed and verified by VerilogHDL and synthesized by Synopsys Design Compiler with a Hynix 0.35$\mu$m STD cell library. The maximum operating frequency is 200MHz and the throughput is 175Mbps with 16 clock latencies.

Evaluation of Setup Uncertainty on the CTV Dose and Setup Margin Using Monte Carlo Simulation (몬테칼로 전산모사를 이용한 셋업오차가 임상표적체적에 전달되는 선량과 셋업마진에 대하여 미치는 영향 평가)

  • Cho, Il-Sung;Kwark, Jung-Won;Cho, Byung-Chul;Kim, Jong-Hoon;Ahn, Seung-Do;Park, Sung-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.81-90
    • /
    • 2012
  • The effect of setup uncertainties on CTV dose and the correlation between setup uncertainties and setup margin were evaluated by Monte Carlo based numerical simulation. Patient specific information of IMRT treatment plan for rectal cancer designed on the VARIAN Eclipse planning system was utilized for the Monte Carlo simulation program including the planned dose distribution and tumor volume information of a rectal cancer patient. The simulation program was developed for the purpose of the study on Linux environment using open source packages, GNU C++ and ROOT data analysis framework. All misalignments of patient setup were assumed to follow the central limit theorem. Thus systematic and random errors were generated according to the gaussian statistics with a given standard deviation as simulation input parameter. After the setup error simulations, the change of dose in CTV volume was analyzed with the simulation result. In order to verify the conventional margin recipe, the correlation between setup error and setup margin was compared with the margin formula developed on three dimensional conformal radiation therapy. The simulation was performed total 2,000 times for each simulation input of systematic and random errors independently. The size of standard deviation for generating patient setup errors was changed from 1 mm to 10 mm with 1 mm step. In case for the systematic error the minimum dose on CTV $D_{min}^{stat{\cdot}}$ was decreased from 100.4 to 72.50% and the mean dose $\bar{D}_{syst{\cdot}}$ was decreased from 100.45% to 97.88%. However the standard deviation of dose distribution in CTV volume was increased from 0.02% to 3.33%. The effect of random error gave the same result of a reduction of mean and minimum dose to CTV volume. It was found that the minimum dose on CTV volume $D_{min}^{rand{\cdot}}$ was reduced from 100.45% to 94.80% and the mean dose to CTV $\bar{D}_{rand{\cdot}}$ was decreased from 100.46% to 97.87%. Like systematic error, the standard deviation of CTV dose ${\Delta}D_{rand}$ was increased from 0.01% to 0.63%. After calculating a size of margin for each systematic and random error the "population ratio" was introduced and applied to verify margin recipe. It was found that the conventional margin formula satisfy margin object on IMRT treatment for rectal cancer. It is considered that the developed Monte-carlo based simulation program might be useful to study for patient setup error and dose coverage in CTV volume due to variations of margin size and setup error.

The DEVS Integrated Development Environment for Simulation-based Battle experimentation (시뮬레이션 기반 전투실험을 위한 DEVS 통합 개발 환경)

  • Hwang, Kun-Chul;Lee, Min-Gyu;Han, Seung-Jin;Yoon, Jae-Moon;You, Yong-Jun;Kim, Sun-Bum;Kim, Jung-Hoon;Nah, Young-In;Lee, Dong-Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.39-47
    • /
    • 2013
  • Simulation based Battle Experimentation is to examine the readiness for a battle using simulation technology. It heavily relies on the weapon systems modeling and simulation. To analyze the characteristics and complexity of the weapon systems in the experiment, the modeling & simulation environment has to be able to break down the system of systems into components and make the use of high fidelity components such as real hardware in simulation. In that sense, the modular and hierarchical structure of DEVS (Discrete EVent System Specification) framework provides potentials to meet the requirements of the battle experimentation environment. This paper describes the development of the DEVS integrated development environment for Simulation based Battle Experimentation. With the design principles of easy, flexible, and fast battle simulation, the newly developed battle experimentation tool mainly consists of 3 parts - model based graphical design tool for making DEVS models and linking them with external simulators easily through diagrams, the experiment plan tool for speeding up a statistic analysis, the standard components model libraries for lego-like building up a weapon system. This noble simulation environment is to provide a means to analyze complex simulation based experiments with different levels of models mixed in a simpler and more efficient way.

An Optimized Hardware Design for High Performance Residual Data Decoder (고성능 잔여 데이터 복호기를 위한 최적화된 하드웨어 설계)

  • Jung, Hong-Kyun;Ryoo, Kwang-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5389-5396
    • /
    • 2012
  • In this paper, an optimized residual data decoder architecture is proposed to improve the performance in H.264/AVC. The proposed architecture is an integrated architecture that combined parallel inverse transform architecture and parallel inverse quantization architecture with common operation units applied new inverse quantization equations. The equations without division operation can reduce execution time and quantity of operation for inverse quantization process. The common operation unit uses multiplier and left shifter for the equations. The inverse quantization architecture with four common operation units can reduce execution cycle of inverse quantization to one cycle. The inverse transform architecture consists of eight inverse transform operation units. Therefore, the architecture can reduce the execution cycle of inverse transform to one cycle. Because inverse quantization operation and inverse transform operation are concurrency, the execution cycle of inverse transform and inverse quantization operation for one $4{\times}4$ block is one cycle. The proposed architecture is synthesized using Magnachip 0.18um CMOS technology. The gate count and the critical path delay of the architecture are 21.9k and 5.5ns, respectively. The throughput of the architecture can achieve 2.89Gpixels/sec at the maximum clock frequency of 181MHz. As the result of measuring the performance of the proposed architecture using the extracted data from JM 9.4, the execution cycle of the proposed architecture is about 88.5% less than that of the existing designs.

Implementation of WLAN Baseband Processor Based on Space-Frequency OFDM Transmit Diversity Scheme (공간-주파수 OFDM 전송 다이버시티 기법 기반 무선 LAN 기저대역 프로세서의 구현)

  • Jung Yunho;Noh Seungpyo;Yoon Hongil;Kim Jaeseok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.5 s.335
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, we propose an efficient symbol detection algorithm for space-frequency OFDM (SF-OFDM) transmit diversity scheme and present the implementation results of the SF-OFDM WLAN baseband processor with the proposed algorithm. When the number of sub-carriers in SF-OFDM scheme is small, the interference between adjacent sub-carriers may be generated. The proposed algorithm eliminates this interference in a parallel manner and obtains a considerable performance improvement over the conventional detection algorithm. The bit error rate (BER) performance of the proposed detection algorithm is evaluated by the simulation. In the case of 2 transmit and 2 receive antennas, at $BER=10^{-4}$ the proposed algorithm obtains about 3 dB gain over the conventional detection algorithm. The packet error rate (PER), link throughput, and coverage performance of the SF-OFDM WLAN with the proposed detection algorithm are also estimated. For the target throughput at $80\%$ of the peak data rate, the SF-OFDM WLAN achieves the average SNR gain of about 5.95 dB and the average coverage gain of 3.98 meter. The SF-OFDM WLAN baseband processor with the proposed algorithm was designed in a hardware description language and synthesized to gate-level circuits using 0.18um 1.8V CMOS standard cell library. With the division-free architecture, the total logic gate count for the processor is 945K. The real-time operation is verified and evaluated using a FPGA test system.

A Design of PRESENT Crypto-Processor Supporting ECB/CBC/OFB/CTR Modes of Operation and Key Lengths of 80/128-bit (ECB/CBC/OFB/CTR 운영모드와 80/128-비트 키 길이를 지원하는 PRESENT 암호 프로세서 설계)

  • Kim, Ki-Bbeum;Cho, Wook-Lae;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1163-1170
    • /
    • 2016
  • A hardware implementation of ultra-lightweight block cipher algorithm PRESENT which was specified as a standard for lightweight cryptography ISO/IEC 29192-2 is described. The PRESENT crypto-processor supports two key lengths of 80 and 128 bits, as well as four modes of operation including ECB, CBC, OFB, and CTR. The PRESENT crypto-processor has on-the-fly key scheduler with master key register, and it can process consecutive blocks of plaintext/ciphertext without reloading master key. In order to achieve a lightweight implementation, the key scheduler was optimized to share circuits for key lengths of 80 bits and 128 bits. The round block was designed with a data-path of 64 bits, so that one round transformation for encryption/decryption is processed in a clock cycle. The PRESENT crypto-processor was verified using Virtex5 FPGA device. The crypto-processor that was synthesized using a $0.18{\mu}m$ CMOS cell library has 8,100 gate equivalents(GE), and the estimated throughput is about 908 Mbps with a maximum operating clock frequency of 454 MHz.