• Title/Summary/Keyword: 디지털논리회로

Search Result 76, Processing Time 0.022 seconds

A New Flash A/D Converter Adopting Double Base Number System (2개의 밑수를 이용한 Flash A/D 변환기)

  • Kim, Jong-Soo;Kim, Man-Ho;Jang, Eun-Hwa
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.54-61
    • /
    • 2008
  • This paper presents a new TIQ based CMOS flash 6-bit ADC to process digital signal in real time. In order to improve the conversion speed of ADC by designing new logic or layout of ADC circuits, a new design method is proposed in encoding logic circuits. The proposed encoding circuits convert analog input into digitally encoded double base number system(DBNS), which uses two bases unlike the normal binary representation scheme. The DBNS adopts binary and ternary radix to enhance digital arithmetic processing capability. In the DBNS, the addition and multiplication can be processed with just shift operations only. Finding near canonical representation is the most important work in general DBNS. But the main disadvantage of DBNS representation in ADC is the fan-in problem. Thus, an equal distribution algorithm is developed to solve the fan-in problem after assignment the prime numbers first. The conversion speed of simulation result was 1.6 GSPS, at 1.8V power with the Magna $0.18{\mu}m$ CMOS process, and the maximum power consumption was 38.71mW.

  • PDF

Design of a Fast Adder Using Robust QCA Design Guide (강건 QCA 설계 지침을 이용한 고속 가산기 설계)

  • Lee Eun-Choul;Kim Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.56-65
    • /
    • 2006
  • The Quantum-dot Cellular Automata (QCA) can be considered as a candidate for the next generation digital logic implementation technology due to their small feature sizes and ultra low power consumption. Up to now, several designs using Uh technology have been proposed. However, we found not all of the designs function properly. Furthermore, no general design guidelines have been proposed so far. A straightforward extension of a simple functional design pattern may fail. This makes designing a large scale circuits using QCA technology an extremely time-consuming process. In this paper, we show several critical vulnerabilities related to unbalanced input paths to QCA gates and sneak noise paths in QCA interconnect structures. In order to make up the vulnerabilities, a disciplinary guideline will be proposed. Also, we present a fast adder which has been designed by the discipline, and verified to be functional by the simulation.

Automatic Visual Architecture Generation System for Efficient HDL Debugging (효율적인 HDL 디버깅을 위한 아키텍쳐 자동 생성 시스템)

  • Moon, Dai-Tchul;Cheng, Xie;Park, In-Hag
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1653-1659
    • /
    • 2013
  • In this paper, we propose a new ECAD software for efficiently analyzing and debugging of digital architecture implemented in Verilog HDL or VHDL codes. This software firstly elaborates HDL codes so as to extract internal architecture structure, then generates several graphical aids such as hierarchical schematics by applying placement and routing algorithm, object tree to show configuration of each module, instance tree to show hierarchical structure of instances, and SPD (Signal Propagation Diagram) to show internal interconnections. It is more important function that same objects in different views(HDL codes, object tree, instance tree, SPD, waveform etc.) can be highlighted at the starting any object. These functions are sure to improve efficiency of manual job to fix bugs or to analyze HDL codes.

The Circuit Design and Analysis of the Digital Delay-Lock Loop in GPS Receiver System (GPS 수신 시스템에서 디지탈 지연동기 루프 회로 설계 및 분석)

  • 금홍식;정은택;이상곤;권태환;유흥균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1464-1474
    • /
    • 1994
  • GPS(Global Positioning System)is a satellite-based navigation system that we can survey where we are, anywhere and anytime. In this paper, delay-lock loop of the receiver which detects the navigation data is theoretically analyzed, and designed using the digital logic circuit. Also logic operations for the synchronization are analyzed. The designed system consists of the correlator which correlates the received C/A code and the generated C/A code in the receiver, the C/A code generator which generates C/A code of selected satellite, and the direct digital clock syntheizer which generates the clock of the C/A code generator to control the C/A code phase and clock rate. From the analyses results of the proposed digital delay-lock loop system, the system has the detection propertied over 90% when its input signal power is above-113.98dB. The influence of input signal variation of digital delay loop, which is the input of A/D converter, is investigated and the performance is analyzed with the variation of threshold level via the computer simulation. The logic simulation results show that the designed system detects precisely the GPS navigation data.

  • PDF

Fault Detection through the LASAR Component modeling of PLD Devices (PLD 소자의 LASAR 부품 모델링을 통한 고장 검출)

  • Pyo, Dae-in;Hong, Seung-beom
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.314-321
    • /
    • 2020
  • Logic automated stimulus and response (LASAR) software is an automatic test program development tool for logic function test and fault detection of avionics components digital circuit cards. LASAR software needs to the information for the logic circuit function and input and output of the device. If there is no component information, normal component modeling is impossible. In this paper, component modeling is carried out through reverse design of programmable logic device (PLD) device without element information. The developed LASAR program identified failure detection rates through fault simulation results and single-seated fault insertion methods. Fault detection rates have risen by 3% to 91% for existing limited modeling and 94% for modeling through the reverse design. Also, the 22 case of stuck fault with the I/O pin of EP310 PLD were detected 100% to confirm the good performance.

An Adaptive Decision-Feedback Equalizer Architecture using RB Complex-Number Filter and chip-set design (RB 복소수 필터를 이용한 적응 결정귀환 등화기 구조 및 칩셋 설계)

  • Kim, Ho Ha;An, Byeong Gyu;Sin, Gyeong Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.2015-2024
    • /
    • 1999
  • Presented in this paper are a new complex-umber filter architecture, which is suitable for an efficient implementation of baseband signal processing of digital communication systems, and a chip-set design of adaptive decision-feedback equalizer (ADFE) employing the proposed structure. The basic concept behind the approach proposed in this paper is to apply redundant binary (RB) arithmetic instead of conventional 2’s complement arithmetic in order to achieve an efficient realization of complex-number multiplication and accumulation. With the proposed way, an N-tap complex-number filter can be realized using 2N RB multipliers and 2N-2 RB adders, and each filter tap has its critical delay of $T_{m.RB}+T_{a.RB}$ (where $T_{m.RB}, T_{a.RB}$are delays of a RB multiplier and a RB adder, respectively), making the filter structure simple, as well as resulting in enhanced speed by means of reduced arithmetic operations. To demonstrate the proposed idea, a prototype ADFE chip-set, FFEM (Feed-Forward Equalizer Module) and DFEM (Decision-Feedback Equalizer Module) that can be cascaded to implement longer filter taps, has been designed. Each module is composed of two complex-number filter taps with their LMS coefficient update circuits, and contains about 26,000 gates. The chip-set was modeled and verified using COSSAP and VHDL, and synthesized using 0.8- μm SOG (Sea-Of-Gate) cell library.

  • PDF