• Title/Summary/Keyword: 등가재료

Search Result 276, Processing Time 0.023 seconds

A Simulation Study on the Stress Distribution of the Transplanting Part of Artificial Knee Joint due to Elastic Modulus (탄성계수에 따른 무릎 인공관절 이식 부품의 응력분포에 관한 시뮬레이션 연구)

  • Lee, J.H.;Hwang, G.W.;Cho, J.U.;Cheon, Seong S.
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.89-93
    • /
    • 2015
  • This study analyzes the transplanting parts used as the graft of artificial knee joint. The low elastic titanium alloy is applied to clear up the stress shield effect. The simulation analysis is carried about the stress distribution of the transplanting parts. The correlation with frame is inferred and investigated through the equivalent stress distribution of titanium alloy due to elastic modulus. The stress of the transplanting parts decreases as the elastic modulus decreases at the first time. It decreases greatly near the stress of 46 GPa and increases again. Because the stress happened at the transplanting parts decreases, more stress is applied on the frame. This phenomenon is the stress shield effect. The result of this study can be thought to be necessary to develop the safe design of composite material.

Two Dimensional Elasto-plastic Stress Analysis by the B.E.M. (경계요소법에 의한 2차원 탄소성응력해석)

  • 조희찬;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.621-629
    • /
    • 1992
  • This study is concerned with an application of the Boundary Element Method to 2-dimensional elastoplastic stress analysis on the material nonlinearities. The boundary integral formulation adopted an initial stress equation in the inelastic term. In order to determine the initial stress increment, the increment of initial elastic strain energy due to elastic increment in stressstrain curve was used as the convergence criterion during iterative process. For the validity of this procedure, the results of B.E.M. with constant elements and NISA with linear elements where compared on the thin plate with 2 edge v-notches under static tension and the thick cylinder under internal pressure. And this paper compared the results of using unmedical integral with the results of using semi-analytical integral on the plastic domain integral.

A Study for Relation Between Fatigue and Structural Members on Othortropic Steel Deck (직교이방성 강바닥판 피로와 구조부재의 관계에 대한 연구)

  • Park, Jong In;Hong, Sung Nam;Kim, Tae Wan;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.41-50
    • /
    • 2012
  • Improvement of steel material quality made fatigue problems more critical than failure of the material itself. In many cases, cracks on the welded parts of steel deck bridges are reported against the failure of steel materials. And the cracks are caused by alternate stress on the welded parts due to live loads on the bridge. The range of alternate stress on the welded part is related to property of the sections which compose othortropic steel deck. Othortropic steel deck is mainly composed of deck plate, ribs and floor beams, wearing surface, etc. In this paper, a methology to estimate the alternate stress for pthortropic steel deck using Pelikan-Esslinger method and signed Von-Mises equivalent stress is proposed first. Parametric study served references for fatigue stresses when designing or repairing othortropic steel deck bridges, by analyzing relationship between alternate stress range and properties of steel deck members.

Fracture Study due to Various Core at Compact Tension Specimen Made of Carbon Fiber Reinforced Plastic (탄소성유강화플라스틱으로 만들어진 소형 인장 시험편에서 여러 종류의 심재에 따른 파손 연구)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.589-596
    • /
    • 2018
  • Transportation or structure has the important role at clothing, food, and housing at modern society. If even the small crack happens and propagates at transportation or structure, the parts are fractured and they can cause a disaster. CT specimen was used in order to investigate the damage trend due to the crack propagation at this study to prevent this situation. As the material of CT specimen, the unidirectional carbon fiber reinforced plastic of the composite material in the limelight nowadays. The laminate angle designated in order of [60/-60/60/-60] was applied to the specimen model with the unidirectional fiber. As the analysis condition, the forced displacement was applied to the hole of upper part after fixing the hole of lower part. At the result of this study, the equivalent stress and shear stress was shown to be higher in order of the structural steel, copper, titanium and aluminum. This study result is thought to be utilized usefully at verifying the damage of CT specimen made of inhomogeneous material.

Shell Finite Element of Reinforced Concrete for Internal Pressure Analysis of Nuclear Containment Building (격납건물 내압해석을 위한 철근콘크리트 쉘 유한요소)

  • Lee, Hong-Pyo;Choun, Young-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.577-585
    • /
    • 2009
  • A 9-node degenerated shell finite element(FE), which has been developed for assessment of ultimate pressure capacity and nonlinear analysis for nuclear containment building is described in this paper. Reissner-Midnlin(RM) assumptions are adopted to develop the shell FE so that transverse shear deformation effects is considered. Material model for concrete prior to cracking is constructed based on the equivalent stress-equivalent strain relationship. Tension stiffening model, shear transfer mechanism and compressive strength reduction model are used to model the material behavior of concrete after cracking. Niwa and Aoyagi-Yamada failure criteria have been adapted to find initial cracking point in compression-tension and tension-tension region, respectively. Finally, the performance of the developed program is tested and demonstrated with several examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

Fragility Analysis of RC Moment Resisting Framewith Masonry Infill Walls (비내력벽을 가진 RC모멘트저항골조의 취약도 해석)

  • Ko, Hyun;Park, Yong-Koo;Choi, Byeong-Tae;Kim, Min-Gyun;Lee, Ui-Hyun;Lee, Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.442-445
    • /
    • 2009
  • 지진에 대한 건축물의 확률적 성능평가에 대해서는 지진하중에 대한 건축물의 손상확률 또는 파괴확률을 나타내는 지진취약도 함수를 작성하여 대상 건축물에 대한 지진위험도를 평가하는 방법을 이용하고 있으며 이에 대한 많은 연구가 이루어지고 있다. 본 연구에서는 지진하중과 구조물 재료특성의 불확실성을 고려하고 대상 건축물의 지진취약도 해석을 통하여 비내력벽의 유무에 따른 건축물의 지진거동 및 내진성능을 평가하였다. 비내력벽을 보편화된 모형화 방법인 등가의 대각 압축 스트럿으로 고려하여 비내력벽의 유무에 따른 저층 철근콘크리트 건축물을 모형화하였으며 지진하중의 강도는 유효최대지반가속도를 이용하여 각 건축물에 대하여 지진취약도를 작성하였다. 취약도해석 결과로 연약층을 가지고 있는 건축물의 경우는 손상확률이 골조만 있는 경우보다 크며 동일한 해석모델의 경우에도 해석방법에 따라서 취약도 곡선의 형태가 다름을 알 수 있었다.

  • PDF

Theoretical Investigation on the Stress-Strain Relationship for the Porous Shape Memory Alloy (기공을 갖는 형상기억합금의 응력 및 변형률 관계에 대한 이론적 고찰)

  • Lee Jae-Kon;Yum Young-Jin;Choi Sung-Bae
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.8-13
    • /
    • 2004
  • A new three-dimensional model fur stress-strain relation of a porous shape memory alloy has been proposed, where Eshelby's equivalent inclusion method with Mori-Tanaka's mean field theory is used. The predicted stress-strain relations by the present model are compared and show good agreements with the experimental results for the Ni-Ti shape memory alloy with porosity of 12%. Unlike linear stress-strain relations during phase transformations by other models from the literature, the present model shows nonlinear stress-strain relation in the vicinity of martensite finish region.

Equivalent Mechanical and Thermal Properties of Multiphase Superconducting Coil Using Finite Element Analysis (유한요소해석을 이용한 다상의 초전도 코일에 대한 기계적 열적 등가 물성)

  • Sa, J.W.;Her, N.I.;Choi, C.H.;Oh, Y.K.;Cho, S.;Do, C.J.;Kwon, M.;Lee, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.975-980
    • /
    • 2001
  • Like composite material. the coil winding pack of the KSTAR (Korea Superconducting Tokamak Advanced Research) consist of multiphase element such as metallic jacket material for protecting superconducting cable, vacuum pressurized imprepregnated (VPI) insulation, and corner roving filler. For jacket material, four CS (Central Solenoid) Coils, $5^{th}$ PF (Poloidal Field) Coil, and TF (Toroidal Field Coil) use Incoloy 908 and $6-7^{th}$ PF coil, Cold worked 316LN. In order to analyze the global behavior of large coil support structure with coil winding pack, it is required to replace the winding pack to monolithic matter with the equivalent mechanical properties, i.e. Young's moduli, shear moduli due to constraint of total nodes number and element numbers. In this study, Equivalent Young's moduli, shear moduli, Poisson's ratio, and thermal expansion coefficient were calculated for all coil winding pack using Finite Element Method.

  • PDF

Kinematic Description of Damage-Elastoplastic Deformation (손상된 재료의 탄소성변형에 대한 운동학적 해석)

  • 박대효;박용걸
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.131-142
    • /
    • 1997
  • In this paper the kinematics of damage for finite elastoplastic deformations is introduced using the fourth-order damage effect tensor through the concept of the effective stress within the framework of continuum damage mechanics. Unlike the approach of strain equivalence or energy equivalence, which is applicable only to small strains, the proposed kinematic description provides a relation between the effective strain and the damage elastoplastic strain in finite deformation. This is accomplished by directly considering the kinematics of the deformation field both real configuration. The proposed approach shows that it is equivalent to the hypothesis of energy equivalence at finite strains. The damage effect tensor in this work is explicitly characterized in terms of a kinematic measure of damage in the elastoplastic domain through a second-order damage tensor.

  • PDF

Evaluation of Limit Strength for Steel Cable-Stayed Bridgesusing Various Cable Elements (다양한 케이블 요소를 이용한 강사장교의 극한강도 평가)

  • Song, Weon-Keun;Rhee, Jong Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.115-121
    • /
    • 2006
  • This paper deals with the influence of behavior of a variety of cable elements on the limit strength of steel cable-stayed bridges. The softening plastic-hinge model, which is represented in this study for the limit strength evaluation of the example bridge, considers both geometric and material nonlinearites. Geometric nonlinearity of beam-column members are accounted by using stability function, and material nonlinearity - by using CRC tangent modulus and parabolic function. Cable sag effect is considered for cable members. The result of this study shows that the limit strength of the example bridge using the equivalent of elasticity for truss straight elements is smaller than those using the cable or the catenary elements.