Theoretical Investigation on the Stress-Strain Relationship for the Porous Shape Memory Alloy

기공을 갖는 형상기억합금의 응력 및 변형률 관계에 대한 이론적 고찰

  • 이재곤 (대구가톨릭대학교 기계자동차공학부) ;
  • 염영진 (울산대학교 기계자동차공학부) ;
  • 최성배 (대구가톨릭대학교 기계자동차공학부)
  • Published : 2004.12.01

Abstract

A new three-dimensional model fur stress-strain relation of a porous shape memory alloy has been proposed, where Eshelby's equivalent inclusion method with Mori-Tanaka's mean field theory is used. The predicted stress-strain relations by the present model are compared and show good agreements with the experimental results for the Ni-Ti shape memory alloy with porosity of 12%. Unlike linear stress-strain relations during phase transformations by other models from the literature, the present model shows nonlinear stress-strain relation in the vicinity of martensite finish region.

Eshelby의 등가개재물범과 Mori-Tanaka의 평균장 이론을 이용하여 다공성 형상기억합금에 대한 새로운 3차원 응력-변형률 모델을 제안하였다. 12%의 기공도를 갖는 Ni-Ti 형상기억합금에 대한 압축실험으로부터 구한 응력-변형률 선도와 본 연구에서 제안한 모델링에 의한 응력-변형률 관계를 비교한 결과 잘 일치함을 알 수 있었다. 기존의 다른 연구에서는 대부분 상변태 구간이 선형적으로 예측되었지만 본 연구에서는 비선형으로 예측되어 실험결과를 보다 잘 모사할 수 있었다.

Keywords

References

  1. 안득만, 김영구, 김부섭, 박익민, 조경목, 최일동, '단섬유 형상기억합금에 의한 복합재료의 강화기구 해석,' 한국복합재료학회지, 10권 3호, 1997, pp.1-15
  2. 김홍건, '형상기억입자 강화 복합체의 탄성계수 평가,' 대한기계학회논문집 A권,제 25권 제l호,2001, pp. 25-31
  3. Furuya Y, Sasaki A, and Taya M, 'On Enhanced Mechanical Properties of TiNi Shape Memory Fiber/AI Matrix Composite,' Mater Trans JIM, Vol. 34, 1993, pp. 224-227
  4. Taya M, Shimamoto A, and Furuya Y, 'Design of Smart Composites Based on Shape Memory Effect,' Proc. of ICCM-10, Vol. 5, 1995, pp. 275-282
  5. Shimamoto A and Taya M, 'Reduction Kl by Shape Memory Fiber-Reinforced Epoxy Matrix Composite,' Trans. JSME, Vol. 63, No. 605, 1997, pp. 26-31 https://doi.org/10.1299/kikaia.63.26
  6. Furuya Y and Taya M, 'Enhancement of High Temperature Mechanical Strength of Ti-Ni Fiber/AI Composite Induced by Shape Memory Effect,' Trans. Japan Inst. Metals. Vol. 60, No. 12, 1996, pp. 1163-1172
  7. Porter GA, Liaw PK, Tiegs TN, and Wu KH, 'Fatigue and fracture behavior of nickel-titanium shape-memory alloy reinforced aluminum composites,' Materials Science and Engineering, Vol. A314, 2001, pp. 186-193
  8. Armstrong WD and Lorentzen T, 'Fiber phase transformation and matrix plastic flow in a room temperature tensile strained NiTi shape memory alloy fiber reinforced 6082 aluminum matrix composite,' Scripta Materialia, Vol. 36, No.9, 1997, pp. 1037-1043 https://doi.org/10.1016/S1359-6462(96)00477-0
  9. Hamada K, Lee JH, Mizuuchi K, Taya M, and Inoue K, 'Thermomechanical Behavior of TiNi Shape Memory Alloy Fiber Reinforced 6061 Aluminum Matrix Composite,' Metallurgical and Materials Transactions, Vol. 29A, 1998, pp. 1127-1135
  10. Armstrong WD, Lorentzen T, Brondsted P and Larsen PH, 'An experimental and modeling investigation of the external strain, internal stress and fiber phase transformation behavior of a TiNi actuated aluminum metal matrix composite,' Acta mater., Vol. 46, No. 10, 1998, pp. 3455-3466 https://doi.org/10.1016/S1359-6454(98)00020-2
  11. Lee JK, 'AE characteristic of the damage behavior of TiNi/AI6061 SMA composite,' Composite Structures, Vol. 60, 2003, pp. 255-263
  12. Yamada Y, Taya M, and Watanabe R, 'Strengthening of Metal Matrix Composite by Shape Memory Effect,' Materials Transactions JIM, Vol. 34, No.3, 1993, pp. 254-260 https://doi.org/10.2320/matertrans1989.34.254
  13. Cherkaoui M, Sun QP, and Song GQ, 'Micromechanics modeling of composite with ductile matrix and shape memory alloy reinforcement,' Int. J of Solids and Structures, Vol. 37, 2000, pp. 1577-1594
  14. Auricchio A, Marfia S, and Sacco E, 'Modeling of SMA materials: Training and two way memory effects,' Computers and Structures, Vol. 81, 2003, pp. 2301-2317
  15. Lee WB, Jie M, and Tang CY, 'Constitutive modeling of aluminum matrix NiTi fiber-reinforced smart composite,' J Materials Processing Technology, Vol. 116, 2001, pp. 219-223
  16. Dunn ML and Taya M., 'Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites,' Int. J Solids Structures, Vol. 30, No. 2, 1993, pp. 161-175 https://doi.org/10.1016/0020-7683(93)90058-F
  17. Wu TL, 'Micromechanics determination of electroelastic properties of piezoelectric materials containing voids,' Materials Science and Engineering, Vol. A280, 2000, pp. 320-327
  18. Qidwai MA, Entchev PB, Lagoudas DC, and DeGiorgi VG, 'Modeling of the thermomechanical behavior of porous shape memory alloys,' Int. Journal of Solids and Structures, Vol. 38, 2001, pp. 8653-8671
  19. Entchev PB and Lagoudas DC, 'Modeling porous shape memory alloys using micromechanical averaging techniques,' Mechanics of Materials, Vol. 34, 2002, pp. 1-24
  20. Eshelby JD, 'The determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems,' Proc. of the Royal Society of London, Vol. A241, 1957, pp. 376-396
  21. Mori T and Tanaka K, 'Average Stress in the Matrix and Average Elastic Energy of Materials with Misfitting Inclusions,' Acta Metallurgica, Vol. 21, 1973, pp.571-574
  22. Tanaka K, 'A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior,' Res Mechanica, Vol. 18, 1986, pp. 251-263
  23. Carvalho FCS and Labuz JF, 'Experiments on Effective Elastic Modulus of Two-Dimensional Solids with Cracks and Holes,' Int. J Solids Structures, Vol. 33, No. 28, 1996, pp. 4119-4130 https://doi.org/10.1016/0020-7683(95)00269-3
  24. Taya M and Zhao Y, 'Design of High Energy Absorbing Materials via Porous Materials,' Report to UCSD, 2003
  25. Tanaka K, Ohnami D, Watanabe T, and Kosegawa J, 'Micromechanical simulations of thermomechanical behavior in shape memory alloys: transformation conditions and thermomechanical hystereses,' Mechanics of Materials, Vol. 34, 2002, pp. 279-298