DOI QR코드

DOI QR Code

A Simulation Study on the Stress Distribution of the Transplanting Part of Artificial Knee Joint due to Elastic Modulus

탄성계수에 따른 무릎 인공관절 이식 부품의 응력분포에 관한 시뮬레이션 연구

  • Lee, J.H. (Department of Mechanical Engineering, Graduate School, Kongju University) ;
  • Hwang, G.W. (Division of Mechanical and Automotive Engineering, Kongju University) ;
  • Cho, J.U. (Division of Mechanical and Automotive Engineering, Kongju University) ;
  • Cheon, Seong S. (Division of Mechanical and Automotive Engineering, Kongju University)
  • Received : 2015.06.09
  • Accepted : 2015.06.25
  • Published : 2015.06.30

Abstract

This study analyzes the transplanting parts used as the graft of artificial knee joint. The low elastic titanium alloy is applied to clear up the stress shield effect. The simulation analysis is carried about the stress distribution of the transplanting parts. The correlation with frame is inferred and investigated through the equivalent stress distribution of titanium alloy due to elastic modulus. The stress of the transplanting parts decreases as the elastic modulus decreases at the first time. It decreases greatly near the stress of 46 GPa and increases again. Because the stress happened at the transplanting parts decreases, more stress is applied on the frame. This phenomenon is the stress shield effect. The result of this study can be thought to be necessary to develop the safe design of composite material.

본 연구는 무릎 인공관절의 이식 조직으로서 사용되는 이식 부품을 분석한다. 저탄성 티타늄 합금은 응력 차폐 현상을 해소하기 위해 적용되어진다. 이식 부품들의 응력 분포를 연구하기 위하여 시뮬레이션 해석이 수행되어진다. 저탄성 티타늄 합금의 탄성계수에 따른 등가응력 분포를 통하여 골격과의 상관 관계가 도출되고 연구된다. 이식 부품의 응력은 탄성계수가 감소함에 따라 처음에는 감소하다가 약 46 GPa 부근에서 가장 크게 감소하고 다시 증가한다. 이식 부품에 걸리는 응력의 감소는 골격에 더 큰 응력이 가해지게 되므로 응력차폐현상으로 볼 수 있다. 본 연구 결과는 무릎 인공관절의 이식 부품과 같은 복합 재료의 안전한 설계를 개발하는데 필요한 자료로 사료된다.

Keywords

References

  1. Jeong, J.Y., Hwang, W.B., and Ha, S.K.,"Structural Analysis and Design of Artificial Hip Joint by Using Finite Element Method," Journal of the Korean Society for Composite Materials, Vol. 12, No. 5, 1999, pp. 98-109.
  2. Martelli, S., Taddei, F., Schileo, E., Cristofolini, L., Rushton, N., and Viceconti, M., "Biomechanical Robustness of a New Proximal Epiphyseal Hip Replacement to Patient Variability and Surgical Uncertainties: A FE Study, Medical Engineering & Physics, Vol. 34, pp. 161-171, 2012. https://doi.org/10.1016/j.medengphy.2011.07.006
  3. Megat Ali, M.S.A., Shariffudin, N., Jahidin, A.H., Mat Som, M.H., and Norali, A.N., "A Preliminary Study: Finite Element Analysis of an Artificial Knee Implant Design", 2010 IEEE Symposium on Industrial Electronics and Applications, Penang, Malaysia, pp. 395-400, 2010.
  4. Choi, H.K. and Cho, J.U., "Study on the Fatigue Analysis of DCB Model with Aluminum Foam", Journal of Korean Society of Mechanical Technology, Vol. 14, No. 6, pp. 39-43, 2012.
  5. Zhang, L., Zhu, M., Shen, L., and Zheng, F., "Finite Element Analysis of the Contact Interface Between Trans-femoral Stump and Prosthetic Socket", 5th Annual International Conference of the IEEE EMBS Osaka, Japan, pp. 1270-1273, 2013.
  6. Kim, H.M., Kim, D.H., Gu, J.U., Choi, N.S., and Kim, S.K., "Effects of Heat Treatment on Mechnical Propoerties of Cross- Linked Ultra-HighMolecular Weight Polyethylene Used for Artificial Joint Liner."Journal of the Korean Society for Composite Materials, Vol. 22, No. 2, 2009, pp. 1-6.

Cited by

  1. Effects of Silicon and Heat-Treatment on Microstructure and Mechanical Properties of Biomedical Ti-39Nb-6Zr Alloy vol.11, pp.2, 2015, https://doi.org/10.3390/met11020268