• Title/Summary/Keyword: 두음리층

Search Result 6, Processing Time 0.018 seconds

The SBAG assemblage in the Dueumri Formation mear the Chunyang granite : Algebraic analysis (춘양 화강암체 주변 두음리층에 산출하는 십자석-흑운모-홍주석-석류석 광물조합: 대수학적 분석)

  • 양판석;조문섭
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.49-58
    • /
    • 1995
  • Staurolite-biotite-andalusite-garnet (SBAG) assemblage and its sub-assemblages (SBA and SBG) commonly occur in the Dueumri Formation near the Chunyang granite, belonging to andalusite and sillimanite zones. The occurrence of the SBAG mineral assemblage is unusual because it is univariant in the $K_2O-FeO-MgO-Al_2O_3-SiO_2-H_2O$ (KFMASH) model system. We used projection and singular value decomposition (SVD) methods to investigate the equilibrium relationship between SBAG and its sub-assemblage. The SVD modelling of single specimen containing the SBAG assemblage suggests no reaction relationship with respect to mass-balance. Thus, the SBAG assemblages are stabilized by non-KFMASH component. On the other hand, the AFM-Mn projection suggests a reaction relationship between SBAG and its sub-assemblage because they intersect each other in this composition space. The SVD modelling, however, suggests no reaction relationship between these assemblages. Thus, the SBAG assemblages are likely to be stabilized by the variation in bulk-rock composition and/or 1.1~2,. The stable occurrence of staurolite in the sillimanite zone is compatible with pressure estimates from the garnet-plagioclase-biotite-muscovite geobarometer.

  • PDF

Exploration and Development in the Janggun Pb-Zn Mine (장군광산(將軍鑛山)의 탐사(探査)와 개발현황(開發現況))

  • Kho, Suck Jin
    • Economic and Environmental Geology
    • /
    • v.20 no.4
    • /
    • pp.289-303
    • /
    • 1987
  • 당(當) 광산(鑛山)은 1936년(年) 금(金), 은(銀) 광종(鑛種)으로 출원(出願)하였다가 1940년(年) 망간을 추가(追加)하여 망간 광산(鑛山)으로 1975년(年)까지 Mn(30~35%) 110,000여(餘)톤을 생산(生産), 국내생산량(國內生産量)의 70%를 점(占)하였고 1976년(年) Mn광상(鑛床) 하부(下部)에 연(鉛), 아연(亞鉛) 유화광(硫化鑛)을 발견(發見), 현재(現在)까지 Pb十Zn=10% 이상(以上) 원광석(原鑛石) 500,000여(餘)톤을 처리(處理), 연정광(鉛精鑛)(Pb : 62%) 37,000여(餘)톤, 아연정광(亞鉛精鑛)(Zn : 46.5%) 37,000여(餘)톤, 유비광정광(硫砒鑛精鑛)(As : 30%) 5,000여(餘)톤을 생산(生産)하였다. 현재(現在) 일처리(日處理) 220톤 선광장(選鑛場)을 일처리(日處理) 400톤 규모(規模)로 증설계획중(增設計劃中)이다. 당(當) 광산(鑛山)에서 현재(現在)까지 시행(施行)한 갱외시추(坑外試錐)는 75개공(個孔) 18,500여(餘)m, 갱내시추(坑內試錐) 750개공(個孔) 40,000여(餘)m 갱도(坑道) 총연장(總延長) 13,000m에 달(達)하며 지표(地表)(623ML)로 부터 수직(垂直) 300m 하부(下部)까지 갱도(坑道)가 개착(開鑿)되어 있다. 당(當) 광산(鑛山)의 지질(地質)은 여러 조사서(調査書)에 의(依)하여 견해(見解) 차이(差異)를 보여주고 있으나 대체(大體)로 다음과 같은 쪽으로 인정되고 있다. 즉(卽) 본지역(本地域) 루층군(累層群)의 층순(層順)을 하위(下位)로 부터 상위(上位)로 향(向)하여 원남층(遠南層)${\rightarrow}$율리통(栗里統)${\rightarrow}$장산규암층(壯山珪岩層)${\rightarrow}$두음리층(斗音里層)${\rightarrow}$장군석회암층(將軍石灰岩層)${\rightarrow}$동수곡층(東水谷層)${\rightarrow}$재산층(才山層)의 순위(順位)로 보며 장산규암층(壯山珪岩層)과 두음리층(斗音里層)을 조선계(朝鮮系)의 양덕통(陽德統)으로, 장군석회암층(將軍石灰岩層)을 대석회암통(大石灰岩統)으로, 동수곡층(東水谷層)과 함탄층(含炭層)인 재산층(才山層)을 평안계(平安系) 지층(地層)으로 대비(對比)한다. 이들은 본지역(本地域) 북(北)쪽에서는 선(先)캠브리아기(紀)의 원남층(遠南層)과 율리통(栗里統)을 불정합(不整合)으로 덮고 남측(南側)에서는 재산층(才山層)과 원남층(遠南層)이 단층접촉(斷層接觸)하고 있다. 이들 지층(地層)의 주향(走向)은 $N60^{\circ}{\sim}80^{\circ}W$, $N60^{\circ}{\sim}80^{\circ}E$이며 경사(傾斜)는 대체(大體)로 $50^{\circ}{\sim}80^{\circ}N$이며 전체적(全體的)으로 역전(逆轉)된 층서(層序)를 보여주는 바 지질구조(地質構造)에 있어서 단사구조(單斜構造)인지 등사(等斜)습곡의 향사(向斜), 또는 등사(等斜)습곡이 배사구조(背斜構造)인지 아직 밝혀지지 않고 있다. 화성암체(火成岩體)는 본지역(本地域) 서측(西側)에 쥬라기(紀) 춘양화강암(春陽花崗岩)이 불규칙(不規則)한 실입(實入) 접촉면(接觸面)을 보여주며 시대미상(時代未詳)(백악기(白堊紀)?)의 거정화강암(巨晶花崗岩), 반화강암(半花崗岩)이 소암주상(小岩株狀)으로 몇 곳 실입(實入)하고 산성(酸性)~중성(中性)의 맥암(脈岩)과 염기성(鹽基性) 안산암질암(安山岩質岩)이 실입(實入)해 있다. 광상(鑛床)은 장군석회암층(將軍石灰岩層)에 배태(胚胎)되어 있는 열수교대(熱水交代) 연(鉛), 아연(亞鉛), 은등(銀等)의 혼합(混合) 유화광상(硫化鑛床)으로 다량(多量)의 Mn분(分)을 수반(隨伴)하며 지표부(地表部)에 Mn광상(鑛床)을 형성(形成)하고 있다. 광상(鑛床)의 형태(形態)는 괴상(塊狀), 각력(角礫)pipe상(狀), 맥상(脈狀)으로 나타난다. 광상(鑛床)의 성인(成因)과 생성시기(生成時期)에 대(對)하여 많은 논란(論難)이 있다. 즉(卽) 열수교대(熱水交代)냐, 접촉교대(接觸交代)냐, 동시퇴적기원(同時堆積起源)이냐, 또는 생성시기(生成時期)가 쥬라기(紀)인지 백악기(白堊紀)인지에 대해 이론(異論)이 있다. 본지역(本地域) 광상(鑛床)은 남본(南本), 100우(右), 북(北), 유비철(硫砒鐵), 동(東), 서(西), 재남(才南), 재동(才東), 110호(號) 등(等)이 지표(地表) Mn로두광화대(露頭鑛化帶)와 관련(關聯) 명명(命名)된 바 전(前)4자(者)는 하부(下部)에서 유화광상(硫化鑛床)이 확인(確認)되었으나 나머지 후자(後者)에서는 아직 하부(下部)에 유화광상(硫化鑛床)이 확인(確認)되지 않고 있으며 남본광상(南本鑛床)으로 부터 남동(南東) 300여(餘)m 지점에 장군석회암층(將軍石灰岩層)과 동수곡층(東水谷層) 경계부(境界部)에 Fe 55~60% 자철광상(磁鐵鑛床)이 확인(確認)된 바 신례미(新禮美) 자철광상(磁鐵鑛床)과 유사성(類似性)이 있는 것 같아 흥미(興味)롭다. 당(當) 광산(鑛山)의 현재(現在)까지의 탐광(探鑛)은 남본광상(南本鑛床) 지표로두(地表露頭)(Mn) 하부(下部)에서 확인(確認)된 연(鉛), 아연(亞鉛), 은(銀) 유화광체(硫化鑛體) 하부(下部)와 전탐(電探)에 의(依)해 확인(確認)된 북광체(北鑛體), 갱도접근중(坑道接近中)에 확인(確認)된 100우광체(右鑛體), 유비철광체(硫砒鐵鑛體) 등(等)의 하부(下部) 탐광(探鑛)을 주(主)로 하고 지표(地表) Mn로두(露頭) 하부(下部)에 대(對)한 시추탐광(試錐探鑛0을 병행(竝行)하고 있으며 시추(試錐)에 의(依)해서 지표(地表)로 부터 790m 하부(下部)(해발(海拔) 200ML)까지 광화대(鑛化帶)가 확인(確認)되었다. 향후(向後) 탐광방침(探鑛方針)을 확고(確固)히 수립(樹立)하기 위(爲)하여는 광상(鑛床)의 성인구명(成因究明)은 물론(勿論) 광상(鑛床)의 배태조건(胚胎條件)에 있어 지질구조규제(地質構造規制)와 화강암(花崗岩)의 실입상(實入狀)과의 관계(關係), 광액(鑛液)의 통로(通路)에 대(對)한 지질구조(地質構造), 모암(母岩)의 화학(化學) 물리적(物理的) 특성(特性)에 대(對)한 연구(硏究) 검토(檢討)가 었어야 하겠다.

  • PDF

Geological Structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbng area, Korea -Crustal evolution and environmental geology of the central part of the North Sobaegsan Massif, Korea- (장군봉지역 선캠브리아대-고생대 변성퇴적암류의 지질구조 -북부 소백산육괴의 중앙부지역의 지각진화와 환경지질)

  • Gang, Ji Hun;Kim, Hyeong Sik;O, Se Bong
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.244-244
    • /
    • 1997
  • The Janggunbong area(this study area) at the central-south part in the North Sobaegsan Massif, Korea, consists mainly of Precambrian(Wonnam and Yulri Formations)-Paleozoic [Joseon Supergroup(Jangsan Quarzite, Dueumri Formation and Janggum Limestone) and Pyeongan Group(Jaesan and Dongsugok Formations)] metasedimentary rocks and Mesozoic granitoid(Chunyang granite.) This study is to interpret geological structure of the North Sobaegsan Massif in the Jang-gunbong area by analysing rock-structure and microstructure of the constituent rocks. It indicates that its geological structure was formed at least by four phases of deformation after the formation of gneissosity(S0) in the Wonnam Formation and bedding plane(S0) in the Paleozoic metasedimentary rocks. The first phase deformation(D1) formed tight isoclinal fold(F1). Its axial plane(S1) strikes east-west and steeply dips north. Its axis (L1) subhorizontally plunges east-west. The second phase deformation(D2), which was related to ductile shear deformation, formed stretching lineation(L2) and shear foliation(S2). The sense of the shear movement indicates dextral strike-slip shearing(top-to-the east shearing). The third phase deformation(D3) formed open inclined fold(F3). Its axial plane(S3) strikes east-west and moderately or gently dips north. Its axis(L3) subhorizontally plunges east-west. The F3 fold reoriented the original north-dipping S1 foliation and D2 shear sense into south-dipping S1 foliation(top-to-the west shear sense on this foliation) at its a limb. The four phase of deformation(D4) formed asymmetric-type open inclined fold(F4) of NE-vergence with NW striking axial plane(S4) and NW-NNW plunging axis(L4). The F4 fold partly reoriented pre-D4 structural elements with east-west trend into those with north-south trend. Such reorientation is recognized mainly in the Paleozoic metasedimentary rocks.

Geological Structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbong area, Korea-Crustal evolution and environmental geology of the central part of the North Sobaegsan massif, Korea- (장군봉지역 선캠브리아대-고생대 변성퇴적암류의 지질구조-북부 소백산육괴의 중앙부지역의 지각진화와 환경지질)

  • 강지훈;김형식;오세봉
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.224-259
    • /
    • 1997
  • The Janggunbong area(this study area) at the central-south part in the North Sobaegsan Massif, Korea, consists mainly of Precambrian(Wonnam and Yulri Formations)-Paleozoic [Joseon Supergroupuangsan Quarzite, Dueumri Formation and Janggun Limestone) and Pyeongan Group (Jaesan and Dongsugok Formations)l metasedimentary rocks and Mesozoic granitoid(Chunyang granite). This study is to interpret geological structure of the North Sobaegsan Massif in the Janggunbong area by analysing rock-structure and microstructure of the constituent rocks. It indicates that its geological structure was formed at least by four phases of deformation after the formation of gneissosity(S0) in the Wonnam Formation and bedding plane(S0) in the Paleozoic metasedimentary rocks. The first phase deformation(D1) formed tight isoclinal fold(F1). Its axial plane(S1) strikes east-west and steeply dips north. Its axis(L1) subhorizontally plunges east-west. The second phase deformation(D2), which was related to ductile shear deformation, formed stretching lineation(L2) and shear foliation(S2). The sense of the shear movement indicates dextral strike-slip shearing(topto-the east shearing). The third phase deformation(D3) formed open inclined fold(F3). Its axial plane(S3) strikes east-west and moderately or gently dips north. Its axis(L3) subhorizontally plunges east-west. The F3 fold reoriented the original north-dipping S1 foliation and D2 shear sense into south-dipping S1 foliation(top-to-the west shear sense on this foliation) at its a limb. The four phase of deformation(D4) formed asymmetric-type open inclined fold(F4) of NE-vergence with NW striking axial plane(%) and NW-NNW plunging axis(L4). The F4 fold partly reoriented pre-D4 structural elements with east-west trend into those with north-south trend. Such reorientaion is recognized mainly in the Paleozoic metasedimentary rocks.

  • PDF

Occurrence and Chemical Composition of Carbonate Mineral from Wallrock Alteration Zone of Janggun Pb-Zn Deposit (장군 연-아연 광상의 모암변질대내 탄산염 광물의 산상 및 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.167-183
    • /
    • 2023
  • The Janggun Pb-Zn deposit consists of Mn orebody, Pb-Zn orebody and Fe orebody. The Mn orebody composed of manganese carbonate orebody and manganese oxide orebody on the basis of their mineralogy and genesis. The geology of this deposit consists of Precambrian Weonnam formation, Yulri group, Paleozoic Jangsan formation, Dueumri formation, Janggum limestone formation, Dongsugok formation, Jaesan formation and Mesozoic Dongwhachi formation and Chungyang granite. This manganese carbonate orebody is hydrothermal replacement orebody formed by reaction of lead and zinc-bearing hydrothermal fluid and Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this hydrothermal replacement orebody consists of mainly rhodochrositization with minor of dolomitization, pyritization, sericitization and chloritization. Carbonates formed during wallrock alteration on the basis of paragenetic sequence are as followed : Ca-dolomite (Co type, wallrock) → ankerite and Ferroan ankerite (C1 type, early stage) → ankerite (C2 type) → sideroplesite (C3 type) → sideroplesite and pistomesite (C4 type, late stage). This means that Fe and Mn elements were enriched during evolution of hydrothermal fluid. Therefore, The substitution of elements during wallrock alteration beween dolomitic marble (Mg, Ca) and lead and zinc-bearing hydrothermal fluid (Fe, Mn) with paragenetic sequence is as followed : 1)Fe ↔ Mn and Mn ↔ Mg, Ca, Fe elements substitution (ankerite and Ferroan ankerite, C1 type, early stage), 2)Fe ↔ Mn, Mn ↔ Mg, Ca and Mg ↔ Ca elements substitution (ankerite, C2 type), 3)Fe ↔ Mn, Fe ↔ Ca and Mn ↔ Mg, Ca elements substitution (sideroplesite, C3 type), and 4)Fe ↔ Mg, Fe ↔ Mn and Mn ↔ Mg, Ca elements substitution (sideroplesite and pistomesite, C4 type, late stage)

Occurrence and Chemical Composition of White Mica from Wallrock Alteration Zone of Janggun Pb-Zn Deposit (장군 연-아연 광상의 모암변질대에서 산출되는 백색운모의 산상 및 화학조성)

  • Bong Chul, Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.469-484
    • /
    • 2022
  • The Janggun Pb-Zn deposit has been known one of the four largest deposits (Yeonhwa, Shinyemi, Uljin) in South Korea. The geology of this deposit consists of Precambrian Weonnam formation, Yulri group, Paleozoic Jangsan formation, Dueumri formation, Janggum limestone formation, Dongsugok formation, Jaesan formation and Mesozoic Dongwhachi formation and Chungyang granite. This Pb-Zn deposit is hydrothermal replacement deposit in Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this deposit consists of mainly rhodochrositization and dolomitization with minor of pyritization, sericitization and chloritization. Wallrock alteration is divided into the five zones (Pb-Zn orebody -> rhodochrosite zone -> dolomite zone -> dolomitic limestone zone -> limestone or dolomitic marble) from orebody to wallrock. The white mica from wallrock alteration occurs as fine or medium aggregate associated with Ca-dolomite, Ferroan ankerite, sideroplesite, rutile, apatite, arsenopyrite, pyrite, sphalerite, galena, quartz, chlorite and calcite. The structural formular of white mica from wallrock alteration is (K0.77-0.62Na0.03-0.00Ca0.03-0.00Ba0.00Sr0.01)0.82-0.64(Al1.72-1.48Mg0.48-0.20Fe0.04-0.01Mn0.03-0.00Ti0.01-0.00Cr0.00As0.01-0.00Co0.03-0.00Zn0.03-0.00Pb0.05-0.00Ni0.01-0.00)2.07-1.92 (Si3.43-3.33Al0.67-0.57)4.00O10(OH1.94-1.80F0.20-0.06)2.00. It indicated that white mica from wallrock alteration has less K, Na and Ca, and more Si than theoretical dioctahedral micas. The white micas from wallrock alteration of Janggun Pb-Zn deposit, Yeonhwa 1 Pb-Zn deposit and Baekjeon Au-Ag deposit, and limestone of Gumoonso area correspond to muscovite and phengite and white mica from wallrock alteration of Dunjeon Au-Ag deposit corresponds to muscovite. Compositional variations in white mica from wallrock alteration of these deposits and limeston of Gumoonso area are caused by mainly phengitic or Tschermark substitution mechanism (Janggun Pb-Zn deposit), mainly phengitic or Tschermark substitution and partly illitic substitution mechanism (Yeonhwa 1 Pb-Zn deposit, Dunjeon Au-Ag deposit and Baekjeon Au-Ag deposit), and mainly phengitic or Tschermark substitution and partly illitic substitution or Na+ <-> K+ substitution mechanism (Gumoonso area).