DOI QR코드

DOI QR Code

Occurrence and Chemical Composition of Carbonate Mineral from Wallrock Alteration Zone of Janggun Pb-Zn Deposit

장군 연-아연 광상의 모암변질대내 탄산염 광물의 산상 및 화학조성

  • Bong Chul Yoo (Critical Minerals Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 유봉철 (한국지질자원연구원 희소금속광상연구센터)
  • Received : 2023.05.31
  • Accepted : 2023.08.02
  • Published : 2023.09.30

Abstract

The Janggun Pb-Zn deposit consists of Mn orebody, Pb-Zn orebody and Fe orebody. The Mn orebody composed of manganese carbonate orebody and manganese oxide orebody on the basis of their mineralogy and genesis. The geology of this deposit consists of Precambrian Weonnam formation, Yulri group, Paleozoic Jangsan formation, Dueumri formation, Janggum limestone formation, Dongsugok formation, Jaesan formation and Mesozoic Dongwhachi formation and Chungyang granite. This manganese carbonate orebody is hydrothermal replacement orebody formed by reaction of lead and zinc-bearing hydrothermal fluid and Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this hydrothermal replacement orebody consists of mainly rhodochrositization with minor of dolomitization, pyritization, sericitization and chloritization. Carbonates formed during wallrock alteration on the basis of paragenetic sequence are as followed : Ca-dolomite (Co type, wallrock) → ankerite and Ferroan ankerite (C1 type, early stage) → ankerite (C2 type) → sideroplesite (C3 type) → sideroplesite and pistomesite (C4 type, late stage). This means that Fe and Mn elements were enriched during evolution of hydrothermal fluid. Therefore, The substitution of elements during wallrock alteration beween dolomitic marble (Mg, Ca) and lead and zinc-bearing hydrothermal fluid (Fe, Mn) with paragenetic sequence is as followed : 1)Fe ↔ Mn and Mn ↔ Mg, Ca, Fe elements substitution (ankerite and Ferroan ankerite, C1 type, early stage), 2)Fe ↔ Mn, Mn ↔ Mg, Ca and Mg ↔ Ca elements substitution (ankerite, C2 type), 3)Fe ↔ Mn, Fe ↔ Ca and Mn ↔ Mg, Ca elements substitution (sideroplesite, C3 type), and 4)Fe ↔ Mg, Fe ↔ Mn and Mn ↔ Mg, Ca elements substitution (sideroplesite and pistomesite, C4 type, late stage)

장군 연-아연 광상은 망간 광체, 연-아연 광체 및 철 광체로 구성된다. 이 망간 광체는 생성환경 및 광물 조합을 토대로 탄산망간 광체와 산화망간 광체로 구성된다. 이 광상 지질은 선캠브리아기의 원남층, 율리층군, 캠브리안기내지 오도비스기의 장산규암층, 두음리층, 장군석회암층, 석탄기내지 이엽기의 동수곡층, 재산층, 쥐라기의 동화지층 및 이들을 관입한 중생대의 춘양화강암류로 구성된다. 이 탄산망간 광체는 고생대 캠브리안기내지 오도비스기의 장군석회암층에 연-아연 열수용액과 반응에 의해 형성된 열수교대형 광체이다. 이 열수교대형 광체의 연-아연 광화작용과 관련된 모암변질작용은 주로 능망간석화작용과 일부 돌로마이트화작용, 황철석화작용, 견운모화작용 및 녹니석화작용 등이 관찰된다. 정출순서에 따른 모암변질작용 시 형성된 탄산염 광물은 Ca-돌로마이트(Co형, 모암) → 철백운석과 Ferroan 철백운석(C1형, 초기) → 철백운석(C2형) → 시데로플레사이트(C3형) → 시데로플레사이트 및 피스토메사이트(C4형, 후기)가 형성되어 Fe와 Mn 원소들이 부화되는 방향으로 진행되었다. 따라서 정출순서에 따른 모암변질작용 시 형성된 모암인 돌로마이트질 대리암(Mg, Ca 기원)과 연-아연 열수용액(Fe, Mn 기원)과 원소들의 치환관계를 살펴보면 다음과 같다. 1)초기 백운석 및 Ferroan 철백운석(C1형)은 Fe ↔ Mn 및 Mn ↔ Mg, Ca, Fe 원소들간 치환에 의해 형성, 2)철백운석(C2형)은 Fe ↔ Mn, Mn ↔ Mg, Ca 및 Mg ↔ Ca 원소들간 치환에 의해 형성, 3)시데로플레사이트(C3형)은 Fe ↔ Mn, Fe ↔ Ca 및 Mn ↔ Mg, Ca 원소들간 치환에 의해 형성과 4)후기 시데로플레사이트와 피스토메사이트(C4형)은 Fe ↔ Mg, Fe ↔ Mn 및 Mn ↔ Mg, Ca 원소들간 치환에 의해 형성되었다.

Keywords

Acknowledgement

우선 이 연구를 수행하게 시료들을 제공해 주신 충남대 이현구 명예교수님께 진심으로 감사드립니다. 이 연구는 한국지질자원연구원 기본사업인 "국내 바나듐(V) 등 에너지 저장광물 정밀탐사기술 개발 및 부존량 예측(23-3211-1) 및 K-배터리 원료광물(Ni, Co) 잠재성 평가 및 활용기술 개발(23-3215) 과제 지원을 받아 수행되었다. 바쁘신 와중에도 이 논문의 미비점을 지적, 수정하여 주신 편집위원장님, 책임편집위원님 및 두분의 심사위원님들께 깊이 감사드립니다.

References

  1. Ahn, K.S., Jeong, H.H. and Lee, H.K., 1993, Prograde reaction series in metapelites around the Janggun mine. Mining Geology, 26, 473-487. 
  2. Biondi, J.C., Santos, R.V. and Cury, L.F., 2013, The Paleoproterozoic Aripuana Zn-Pb-Ag (Au, Cu) volcanogenic massive sulfide deposit, Mato Grosso, Brazil: Geology, geochemistry of alteration, carbon and oxygen isotope modeling, and implications for genesis. Economic Geology, 108, 781-811.  https://doi.org/10.2113/econgeo.108.4.781
  3. Hwang, I.C., 1968, Report on the Sam Han Chang Gun manganese deposits. Mining Geology, 1, 9-34. 
  4. Kang, J.H., Kim, H.S. and Oh, S.B., 1997, Geological structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbong area, Korea: Crustal evolution and environmental geology of the central part of the north Sobaegsan massif, Korea. Journal of Petrological Society of Korea, 6, 244-259. 
  5. Kang, J.H., Oh, S.B. and Kim, H.S., 1998, Time-relationship between deformation and metamorphism of the Paleozoic metasedimentary rocks of the north Sobaegsan massif in the Janggunbong area, Korea. Journal of Petrological Society of Korea, 7, 190-206. 
  6. Kim, J.Y., 2010, Geochemical and mineralogical characterization of the abandoned Janggun mine, Korea. Master dissertation, Andong National University, 88p.
  7. Kim, K.H., 1986, Origin of manganese carbonates in the Janggun mine, South Korea. Mining Geology, 19, 109-122. 
  8. Kim, K.Y., Kim, H.S., Oh, C.H., Park, C.S., Kang, J.H. and Ryu, Y.B., 1996, Poly-metamorphism of Pre-Cambrian to Paleozoic metasedimentry rocks in Janggunbong area, Korea: Crustal evolution and environmental geology of the central part of the north Sobaegsan massif, Korea. Journal of Petrological Society of Korea, 5, 168-187. 
  9. Kim, S.J., 1979, The stratabound manganese carbonate deposits of the Janggun mine area, Korea. Monograph series on Mineral Deposits, No. 18. 
  10. Kho, S.J., 1987, Exploration and development in the Janggun Pb-Zn mine. Mining Geology, 20, 289-303. 
  11. Lee, C.H., Song, S.H. and Lee, H.K., 1996a, Mg-skarn minerals from magnetite deposits of the Janggun mine, Korea. Economic and Environmental Geology, 29, 11-19. 
  12. Lee, D.S., 1967, Geological study of Janggun manganese mine. Journal of Geological Society of Korea, 3, 51-59. 
  13. Lee, H.K., 1985, Hydrothermal manganese enrichment of the Janggun carbonate rocks at the Janggun mine, Republic of Korea. Chungnam Journal of Sciences, 12, 99-111. 
  14. Lee, H.K., Ko, S.J. and Imai, N., 1990, Genesis of the lead-zinc-silver and iron deposits of the Janggun mine, as related to their structural features: Structural control and wallrock alteration of ore formation. Mining Geology, 23, 161-181. 
  15. Lee, H.K. and Imai, N., 1986, Stannite from the Janggun mine, Republic of Korea: Contributions to the knowledge of ore-forming minerals in the Janggun lead-zinc-silver (3). Mining Geology, 19, 121-130. 
  16. Lee, H.K., Lee, C.H. and Kim, S.J., 1996b, Geochemistry of stable isotope and mineralization age of magnetite deposits in the Janggun mine, Korea. Economic and Environmental Geology, 29, 411-419. 
  17. Lee, H.K., Lee, C.H. and Kim, S.J., 1998, Geochemistry and mineralization age of magnesian skarn-type iron deposits of the Janggun mine, Republic of Korea. Mineralium Deposita, 33, 379-390.  https://doi.org/10.1007/s001260050156
  18. Lee, H.K., Lee, C.H. and Song, S.H., 1996c, Ore minerals and mineralization conditions of magnetite deposits in the Janggun mine, Korea. Economic and Environmental Geology, 29, 1-9. 
  19. Park, K.H. and Chang, H.W., 2005, Pb isotopic composition of Yeonhwa and Janggun Pb-Zn ore deposits and origin of Pb: Role of Precambrian crustal basementand Mesozoic igneous rocks. Journal of Petrological Society of Korea, 14, 141-148. 
  20. Reinhold, C., 1998, Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany. Sedimentary Geology, 121, 71-95.  https://doi.org/10.1016/S0037-0738(98)00077-3
  21. Ren, Y., Zhong, D., Gao, C., Yang, Q., Xie, R., Jia, L., Jiang, Y. and Zhong, N., 2017, Dolomite geochemistry of the Cambrian Longwangmiao formation, eastern Sichuan basin: Implication for dolomitization and reservoir prediction. Petroleum Research, 2, 64-76.  https://doi.org/10.1016/j.ptlrs.2017.06.002
  22. Yoo, B.C., 2012, Element dispersion by the wallrock alteration of Janggun lead-zinc-silver deposit. Economic and Environmental Geology, 45, 623-641.  https://doi.org/10.9719/EEG.2012.45.6.623
  23. Yoo, B.C., 2022, Occurrence and chemical composition of white mica from wallrock alteration zone of Janggun Pb-Zn deposit. Korean Journal of Mineralogy and Petrology, 35, 469-484.