Browse > Article
http://dx.doi.org/10.22807/KJMP.2022.35.4.469

Occurrence and Chemical Composition of White Mica from Wallrock Alteration Zone of Janggun Pb-Zn Deposit  

Bong Chul, Yoo (Critical Minerals Research Center, Korea Institute of Geoscience and Mineral Resources)
Publication Information
Korean Journal of Mineralogy and Petrology / v.35, no.4, 2022 , pp. 469-484 More about this Journal
Abstract
The Janggun Pb-Zn deposit has been known one of the four largest deposits (Yeonhwa, Shinyemi, Uljin) in South Korea. The geology of this deposit consists of Precambrian Weonnam formation, Yulri group, Paleozoic Jangsan formation, Dueumri formation, Janggum limestone formation, Dongsugok formation, Jaesan formation and Mesozoic Dongwhachi formation and Chungyang granite. This Pb-Zn deposit is hydrothermal replacement deposit in Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this deposit consists of mainly rhodochrositization and dolomitization with minor of pyritization, sericitization and chloritization. Wallrock alteration is divided into the five zones (Pb-Zn orebody -> rhodochrosite zone -> dolomite zone -> dolomitic limestone zone -> limestone or dolomitic marble) from orebody to wallrock. The white mica from wallrock alteration occurs as fine or medium aggregate associated with Ca-dolomite, Ferroan ankerite, sideroplesite, rutile, apatite, arsenopyrite, pyrite, sphalerite, galena, quartz, chlorite and calcite. The structural formular of white mica from wallrock alteration is (K0.77-0.62Na0.03-0.00Ca0.03-0.00Ba0.00Sr0.01)0.82-0.64(Al1.72-1.48Mg0.48-0.20Fe0.04-0.01Mn0.03-0.00Ti0.01-0.00Cr0.00As0.01-0.00Co0.03-0.00Zn0.03-0.00Pb0.05-0.00Ni0.01-0.00)2.07-1.92 (Si3.43-3.33Al0.67-0.57)4.00O10(OH1.94-1.80F0.20-0.06)2.00. It indicated that white mica from wallrock alteration has less K, Na and Ca, and more Si than theoretical dioctahedral micas. The white micas from wallrock alteration of Janggun Pb-Zn deposit, Yeonhwa 1 Pb-Zn deposit and Baekjeon Au-Ag deposit, and limestone of Gumoonso area correspond to muscovite and phengite and white mica from wallrock alteration of Dunjeon Au-Ag deposit corresponds to muscovite. Compositional variations in white mica from wallrock alteration of these deposits and limeston of Gumoonso area are caused by mainly phengitic or Tschermark substitution mechanism (Janggun Pb-Zn deposit), mainly phengitic or Tschermark substitution and partly illitic substitution mechanism (Yeonhwa 1 Pb-Zn deposit, Dunjeon Au-Ag deposit and Baekjeon Au-Ag deposit), and mainly phengitic or Tschermark substitution and partly illitic substitution or Na+ <-> K+ substitution mechanism (Gumoonso area).
Keywords
Janggun Pb-Zn-Ag deposit; Wallrock alteration; White mica; Occurrence; Chemical composition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee, D.S., 1967, Geological study of Janggun manganese mine. Journal of Geological Society of Korea, 3, 51-59.
2 Lee, H.K., 1985, Hydrothermal manganese enrichment of the Janggun carbonate rocks at the Janggun mine, Republic of Korea. Chungnam Journal of Sciences, 12, 99-111.
3 Lee, H.K., Ko, S.J. and Imai, N., 1990, Genesis of the leadzinc-silver and iron deposits of the Janggun mine, as related to their structural features: Structural control and wallrock alteration of ore formation. Mining Geology, 23, 161-181.
4 Lee, H.K. and Imai, N., 1986, Stannite from the Janggun mine, Republic of Korea: Contributions to the knowledge of oreforming minerals in the Janggun lead-zinc-silver (3). Mining Geology, 19, 121-130.
5 Lee, H.K., Lee, C.H. and Kim, S.J., 1996b, Geochemistry of stable isotope and mineralization age of magnetite deposits in the Janggun mine, Korea. Economic and Environmental Geology, 29, 411-419.
6 Lee, H.K., Lee, C.H. and Kim, S.J., 1998, Geochemistry and mineralization age of magnesian skarn-type iron deposits of the Janggun mine, Republic of Korea. Mineralium Deposita, 33, 379-390.   DOI
7 Lee, H.K., Lee, C.H. and Song, S.H., 1996c, Ore minerals and mineralization conditions of magnetite deposits in the Janggun mine, Korea. Economic and Environmental Geology, 29, 1-9.
8 Park, K.H. and Chang, H.W., 2005, Pb isotopic composition of Yeonhwa and Janggun Pb-Zn ore deposits and origin of Pb: Role of Precambrian crustal basementand Mesozoic igneous rocks. Journal of Petrological Society of Korea, 14, 141-148.
9 Pearce, M.A., White, A.J.R., Fisher, L.A., Hough, R.M. and Cleverley, J.S., 2015, Gold deposition caused by carbonation of biotite during late-stage fluid flow. Lithos, 239, 114-127.   DOI
10 Rieder, M., Cavazzini, G., D'Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenhein, S., Koval, P.V., Muller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R., 1999, Nomenclature of the micas. Mineralogical Magazine, 63, 267-279.   DOI
11 Tappert, M.C., Rivard, B., Giles, D., Tappert, R. and Mauger, A., 2013, The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geology Reviews, 53, 26-38.   DOI
12 Tindle, A.G. and Webb, P.C., 1990, Estimation of lithium contents in trioctahedral micas using microprobe data : application to micas from granitic rocks. European Journal of Mineralogy, 2, 595-610.   DOI
13 Tischendorf, G., Gottesmann, B., Forster, H.J. and Trumbull, R.B., 1997, On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61, 809-834.   DOI
14 Uribe-Mogollon, C. and Maher, K., 2018, White mica geochemistry of the Copper Cliff porphyry Cu deposit: Insights from a vectoring tool applied to exploration. Economic Geology, 113, 1269-1295.   DOI
15 Yoo, B.C., 2019, White mica and chemical composition of Samdeok Mo deposit, Republic of Korea. Journal of the Mineralogical Society of Korea, 32, 223-234.   DOI
16 Wallace, C.J., 2016, Latite dikes, phyllic alteration and geochemical variations of micas at the copper flat hydrothermal system, Hillsboro, Sierra county, New Mexico, USA. Master thesis, New Mexico Institute of Mining and Technology, New Mexico, USA, 107p.
17 Wang, R., Cudahy, T., Laukamp, C., Walshe, J.L., Bath, A., Mei, Y., Young, C., Roache, T.J., Jenkins, A., Roberts, M., Barker, A. and Laird, J., 2017, White mica as a hyperspectral tool in exploration for the Sunrise Dam and Kanowna Belle gold deposits, Western Australia. Economic Geology, 112, 1153-1176.   DOI
18 Yoo, B.C., 2012, Element dispersion by the wallrock alteration of Janggun lead-zinc-silver deposit. Economic and Environmental Geology, 45, 623-641.   DOI
19 Yoo, B.C., 2020, Occurrence and chemical composition of white mica and ankerite from laminated quartz vein of Samgwang Au-Ag deposit, Republic of Korea. Korean Journal of Mineralogy and Petrology, 33, 53-64.
20 Ahn, K.S., Jeong, H.H. and Lee, H.K., 1993, Prograde reaction series in metapelites around the Janggun mine. Mining Geology, 26, 473-487.
21 Ayati, F., Yavuz, F., Noghreyan, M., Haroni, H.A. and Yavuz, R., 2008, Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arak, central province of Iran. Mineralogy and Petrology, 94, 107-122.   DOI
22 Hwang, I.C., 1968, Report on the Sam Han Chang Gun manganese deposits. Mining Geology, 1, 9-33.
23 Christie, A.B. and Brathwaite, R.L., 2003, Hydrothermal alteration in metasedimentary rock-hosted orogenic gold deposits, Reefton goldfield, South Island, New Zealand. Mineralium Deposita, 38, 87-107.   DOI
24 Deer, W.A., Howie, R.A. and Zussman, J., 2013, An introduction to the rock-forming minerals, 3rd edition. Stevenage, Berforts Information Press, 498p.
25 Cohen, J.F., 2011, Compositional Variations in Hydrothermal White Mica and Chlorite from Wall-Rock Alteration at the Ann-Mason Porphyry Copper Deposit, Nevada. Master dissertation, Oregon State University, Oregon, USA, 121p.
26 Craw, D. and MacKenzie, D., 2016, Macraes orogenic gold deposit (New Zealand) Origin and development of a world class gold mine. Springer, 127p.
27 Deer, W.A., Howie, R.A. and Zussman, J., 2003, Rock-forming minerals, sheet silicates: Micas, 2, 308p.
28 Dehnavi, A.S., McFarlane, C.R.M., Lentz, D.R., McClenaghan, S.H. and Walker, J.A., 2019, Chlorite-white mica pairs' composition as a micro-chemical guide to fingerprint massive sulfide deposits of the Bathurst mining camp, Canada. Minerals, 9, 125.
29 Gaillard, N., Williams-Jones, A.E., Clark, J.R., Lypaczewski, P., Salvi, S., Perrouty, S., Piette-Lauziere, N., Guilmette, C. and Linnen, R.L., 2018, Mica composition as a vector to gold mineralization: Deciphering hydrothermal and metamorphic effects in the Malartic district, Quebec. Ore Geology Reviews, 95, 789-820.   DOI
30 Jimenez, T.R.A., 2011, Variation in hydrothermal muscovite and chlorite composition in the Highland valley porphyry Cu-Mo district, British Columbia, Canada. Master dissertation, University of British Columbia, Vancouver, Canada, 233p.
31 Hwang, I.C., 1968, Report on the Sam Han Chang Gun manganese deposits. Mining Geology, 1, 9-34.
32 Kang, J.H., Kim, H.S. and Oh, S.B., 1997, Geological structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbong area, Korea: Crustal evolution and environmental geology of the central part of the north Sobaegsan massif, Korea. Journal of Petrological Society of Korea, 6, 244-259.
33 Kim, K.H., 1986, Origin of manganese carbonates in the Janggun mine, South Korea. Mining Geology, 19, 109-122.
34 Kang, J.H., Oh, S.B. and Kim, H.S., 1998, Time-relationship between deformation and metamorphism of the Paleozoic metasedimentary rocks of the north Sobaegsan massif in the Janggunbong area, Korea. Journal of Petrological Society of Korea, 7, 190-206.
35 Kim, G.B., 2017, Exploration parameters for potential skarn ore deposits in the Taebaeksan mineralized province. Master dissertation, Korea University, 139p.
36 Kim, J.Y., 2010, Geochemical and mineralogical characterization of the abandoned Janggun mine, Korea. Master dissertation, Andong National University, 88p.
37 Kim, K.Y., Kim, H.S., Oh, C.H., Park, C.S., Kang, J.H. and Ryu, Y.B., 1996, Poly-metamorphism of Pre-Cambrian to Paleozoic metasedimentry rocks in Janggunbong area, Korea: Crustal evolution and environmental geology of the central part of the north Sobaegsan massif, Korea. Journal of Petrological Society of Korea, 5, 168-187.
38 Kim, S.J., 1979, The stratabound manganese carbonate deposits of the Janggun mine area, Korea. Monograph series on Mineral Deposits, No. 18.
39 Kho, S.J., 1987, Exploration and development in the Janggun Pb-Zn mine. Mining Geology, 20, 289-303.
40 Lee, C.H., 1993, Geology, mineralogy, fluid inclusion and stable isotope of gold, silver and antimony ore deposits of the Dunjeon-Baegjeon area, northern Taebaegsan mining district, Korea. Ph.D. dissertation, Seoul National University, 422p.
41 Lee, C.H., Song, S.H. and Lee, H.K., 1996a, Mg-skarn minerals from magnetite deposits of the Janggun mine, Korea. Economic and Environmental Geology, 29, 11-19.