DOI QR코드

DOI QR Code

Occurrence and Chemical Composition of White Mica from Wallrock Alteration Zone of Janggun Pb-Zn Deposit

장군 연-아연 광상의 모암변질대에서 산출되는 백색운모의 산상 및 화학조성

  • Bong Chul, Yoo (Critical Minerals Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 유봉철 (한국지질자원연구원 희소금속광상연구센터)
  • Received : 2022.12.01
  • Accepted : 2022.12.14
  • Published : 2022.12.31

Abstract

The Janggun Pb-Zn deposit has been known one of the four largest deposits (Yeonhwa, Shinyemi, Uljin) in South Korea. The geology of this deposit consists of Precambrian Weonnam formation, Yulri group, Paleozoic Jangsan formation, Dueumri formation, Janggum limestone formation, Dongsugok formation, Jaesan formation and Mesozoic Dongwhachi formation and Chungyang granite. This Pb-Zn deposit is hydrothermal replacement deposit in Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this deposit consists of mainly rhodochrositization and dolomitization with minor of pyritization, sericitization and chloritization. Wallrock alteration is divided into the five zones (Pb-Zn orebody -> rhodochrosite zone -> dolomite zone -> dolomitic limestone zone -> limestone or dolomitic marble) from orebody to wallrock. The white mica from wallrock alteration occurs as fine or medium aggregate associated with Ca-dolomite, Ferroan ankerite, sideroplesite, rutile, apatite, arsenopyrite, pyrite, sphalerite, galena, quartz, chlorite and calcite. The structural formular of white mica from wallrock alteration is (K0.77-0.62Na0.03-0.00Ca0.03-0.00Ba0.00Sr0.01)0.82-0.64(Al1.72-1.48Mg0.48-0.20Fe0.04-0.01Mn0.03-0.00Ti0.01-0.00Cr0.00As0.01-0.00Co0.03-0.00Zn0.03-0.00Pb0.05-0.00Ni0.01-0.00)2.07-1.92 (Si3.43-3.33Al0.67-0.57)4.00O10(OH1.94-1.80F0.20-0.06)2.00. It indicated that white mica from wallrock alteration has less K, Na and Ca, and more Si than theoretical dioctahedral micas. The white micas from wallrock alteration of Janggun Pb-Zn deposit, Yeonhwa 1 Pb-Zn deposit and Baekjeon Au-Ag deposit, and limestone of Gumoonso area correspond to muscovite and phengite and white mica from wallrock alteration of Dunjeon Au-Ag deposit corresponds to muscovite. Compositional variations in white mica from wallrock alteration of these deposits and limeston of Gumoonso area are caused by mainly phengitic or Tschermark substitution mechanism (Janggun Pb-Zn deposit), mainly phengitic or Tschermark substitution and partly illitic substitution mechanism (Yeonhwa 1 Pb-Zn deposit, Dunjeon Au-Ag deposit and Baekjeon Au-Ag deposit), and mainly phengitic or Tschermark substitution and partly illitic substitution or Na+ <-> K+ substitution mechanism (Gumoonso area).

장군 연-아연 광상은 남한의 4대(연화 광상, 신예미 광상, 울진 광상) 연-아연 광상중의 하나이었다. 이 광상 지질은 선캠브리아기의 원남층, 율리층군, 캠브리안기내지 오도비스기의 장산규암층, 두음리층, 장군 석회암층, 석탄기내지 이엽기의 동수곡층, 재산층, 쥐라기의 동화지층 및 이들을 관입한 중생대의 춘양화강암류로 구성된다. 이 연-아연 광상은 고생대 캠브리안기내지 오도비스기의 장군석회암층에 배태되는 열수교대형 광상에 해당된다. 이 광상의 연-아연 광화작용과 관련된 모암변질작용은 주로 능망간석화작용과 돌로마이트화 작용이 관찰되나 황철석화작용, 견운모화작용 및 녹니석화작용 등도 관찰된다. 모암변질작용은 연-아연 광체 에서 모암으로 감에 따라 연-아연 광체 -> 능망간석대 -> 돌로마이트대 -> 돌로마이트질 석회암대 -> 석회암 및 돌로마이트 대리암 변화된다. 백색운모는 모암변질대(능망간석화작용과 돌로마이트화작용)에서 Ca-돌로마이트, Ferroan ankerite, sideroplesite, 금홍석, 인회석, 유비철석, 황철석, 섬아연석, 방연석, 석영, 녹니석 및 방해석 등과 함께 중립내지 세립질 입단으로 산출된다. 이 백색운모의 화학조성은(K0.77-0.62Na0.03-0.00Ca0.03-0.00Ba0.00Sr0.01)0.82-0.64(Al1.72-1.48Mg0.48-0.20Fe0.04-0.01Mn0.03-0.00Ti0.01-0.00Cr0.00As0.01-0.00Co0.03-0.00Zn0.03-0.00Pb0.05-0.00Ni0.01-0.00)2.07-1.92 (Si3.43-3.33Al0.67-0.57)4.00O10(OH1.94-1.80F0.20-0.06)2.00로써 이론적인 이중팔면체형 운모류 값보다 Si가 높고 K, Na, Ca는 낮다. 또한 장군 연-아연 광상, 연화1 연-아연 광상 및 백전 금-은 광상의 모암변질대와 구문소일대 석회암에서 산출되는 백색운모는 백운모와 팬자이트에 해당되나 둔전 금-은 광상의 모암변질대에서 산출되는 백색운모는 백운모에 해당된다. 더불어 이들 광상의 모암변질대 및 구문소일대 석회암에서 산출되는 백색운모의 화학조성 변화는 주로 팬자이틱 또는 Tschermark 치환 메카니즘(장군 연-아연 광상), 주로 팬자이틱 또는 Tschermark 치환과 일부 illitic 치환 메카니즘(연화1 연-아연 광상, 둔전 금-은 광상, 백전 금-은 광상) 및 주로 팬자이틱 또는 Tschermark 치환과 일부 illitic 치환 및 Na+ <-> K+ 치환 메카니즘(구문소일대)에 의해 일어났음을 알 수 있다.

Keywords

Acknowledgement

우선 이 연구를 수행하게 시료들을 제공해 주신 충남대 이현구 명예교수님께 진심으로 감사드립니다. 이 연구는 한국지질자원연구원 기본사업인 "국내 바나듐 (V)등 에너지 저장광물 정밀탐사기술 개발 및 부존량 예측(22-3211-1) 과제 지원을 받아 수행되었으며 이에 사의를 표한다. 바쁘신 와중에도 이 논문의 미비점을 지적, 수정하여 주신 편집위원장님 및 두분의 심사위원님들께 깊이 감사드립니다.

References

  1. Ahn, K.S., Jeong, H.H. and Lee, H.K., 1993, Prograde reaction series in metapelites around the Janggun mine. Mining Geology, 26, 473-487.
  2. Ayati, F., Yavuz, F., Noghreyan, M., Haroni, H.A. and Yavuz, R., 2008, Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arak, central province of Iran. Mineralogy and Petrology, 94, 107-122. https://doi.org/10.1007/s00710-008-0006-5
  3. Hwang, I.C., 1968, Report on the Sam Han Chang Gun manganese deposits. Mining Geology, 1, 9-33.
  4. Christie, A.B. and Brathwaite, R.L., 2003, Hydrothermal alteration in metasedimentary rock-hosted orogenic gold deposits, Reefton goldfield, South Island, New Zealand. Mineralium Deposita, 38, 87-107. https://doi.org/10.1007/s00126-002-0280-9
  5. Cohen, J.F., 2011, Compositional Variations in Hydrothermal White Mica and Chlorite from Wall-Rock Alteration at the Ann-Mason Porphyry Copper Deposit, Nevada. Master dissertation, Oregon State University, Oregon, USA, 121p.
  6. Craw, D. and MacKenzie, D., 2016, Macraes orogenic gold deposit (New Zealand) Origin and development of a world class gold mine. Springer, 127p.
  7. Deer, W.A., Howie, R.A. and Zussman, J., 2003, Rock-forming minerals, sheet silicates: Micas, 2, 308p.
  8. Deer, W.A., Howie, R.A. and Zussman, J., 2013, An introduction to the rock-forming minerals, 3rd edition. Stevenage, Berforts Information Press, 498p.
  9. Dehnavi, A.S., McFarlane, C.R.M., Lentz, D.R., McClenaghan, S.H. and Walker, J.A., 2019, Chlorite-white mica pairs' composition as a micro-chemical guide to fingerprint massive sulfide deposits of the Bathurst mining camp, Canada. Minerals, 9, 125.
  10. Gaillard, N., Williams-Jones, A.E., Clark, J.R., Lypaczewski, P., Salvi, S., Perrouty, S., Piette-Lauziere, N., Guilmette, C. and Linnen, R.L., 2018, Mica composition as a vector to gold mineralization: Deciphering hydrothermal and metamorphic effects in the Malartic district, Quebec. Ore Geology Reviews, 95, 789-820. https://doi.org/10.1016/j.oregeorev.2018.02.009
  11. Jimenez, T.R.A., 2011, Variation in hydrothermal muscovite and chlorite composition in the Highland valley porphyry Cu-Mo district, British Columbia, Canada. Master dissertation, University of British Columbia, Vancouver, Canada, 233p.
  12. Hwang, I.C., 1968, Report on the Sam Han Chang Gun manganese deposits. Mining Geology, 1, 9-34.
  13. Kang, J.H., Kim, H.S. and Oh, S.B., 1997, Geological structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbong area, Korea: Crustal evolution and environmental geology of the central part of the north Sobaegsan massif, Korea. Journal of Petrological Society of Korea, 6, 244-259.
  14. Kang, J.H., Oh, S.B. and Kim, H.S., 1998, Time-relationship between deformation and metamorphism of the Paleozoic metasedimentary rocks of the north Sobaegsan massif in the Janggunbong area, Korea. Journal of Petrological Society of Korea, 7, 190-206.
  15. Kim, G.B., 2017, Exploration parameters for potential skarn ore deposits in the Taebaeksan mineralized province. Master dissertation, Korea University, 139p.
  16. Kim, J.Y., 2010, Geochemical and mineralogical characterization of the abandoned Janggun mine, Korea. Master dissertation, Andong National University, 88p.
  17. Kim, K.H., 1986, Origin of manganese carbonates in the Janggun mine, South Korea. Mining Geology, 19, 109-122.
  18. Kim, K.Y., Kim, H.S., Oh, C.H., Park, C.S., Kang, J.H. and Ryu, Y.B., 1996, Poly-metamorphism of Pre-Cambrian to Paleozoic metasedimentry rocks in Janggunbong area, Korea: Crustal evolution and environmental geology of the central part of the north Sobaegsan massif, Korea. Journal of Petrological Society of Korea, 5, 168-187.
  19. Kim, S.J., 1979, The stratabound manganese carbonate deposits of the Janggun mine area, Korea. Monograph series on Mineral Deposits, No. 18.
  20. Kho, S.J., 1987, Exploration and development in the Janggun Pb-Zn mine. Mining Geology, 20, 289-303.
  21. Lee, C.H., 1993, Geology, mineralogy, fluid inclusion and stable isotope of gold, silver and antimony ore deposits of the Dunjeon-Baegjeon area, northern Taebaegsan mining district, Korea. Ph.D. dissertation, Seoul National University, 422p.
  22. Lee, C.H., Song, S.H. and Lee, H.K., 1996a, Mg-skarn minerals from magnetite deposits of the Janggun mine, Korea. Economic and Environmental Geology, 29, 11-19.
  23. Lee, D.S., 1967, Geological study of Janggun manganese mine. Journal of Geological Society of Korea, 3, 51-59.
  24. Lee, H.K., 1985, Hydrothermal manganese enrichment of the Janggun carbonate rocks at the Janggun mine, Republic of Korea. Chungnam Journal of Sciences, 12, 99-111.
  25. Lee, H.K., Ko, S.J. and Imai, N., 1990, Genesis of the leadzinc-silver and iron deposits of the Janggun mine, as related to their structural features: Structural control and wallrock alteration of ore formation. Mining Geology, 23, 161-181.
  26. Lee, H.K. and Imai, N., 1986, Stannite from the Janggun mine, Republic of Korea: Contributions to the knowledge of oreforming minerals in the Janggun lead-zinc-silver (3). Mining Geology, 19, 121-130.
  27. Lee, H.K., Lee, C.H. and Kim, S.J., 1996b, Geochemistry of stable isotope and mineralization age of magnetite deposits in the Janggun mine, Korea. Economic and Environmental Geology, 29, 411-419.
  28. Lee, H.K., Lee, C.H. and Kim, S.J., 1998, Geochemistry and mineralization age of magnesian skarn-type iron deposits of the Janggun mine, Republic of Korea. Mineralium Deposita, 33, 379-390. https://doi.org/10.1007/s001260050156
  29. Lee, H.K., Lee, C.H. and Song, S.H., 1996c, Ore minerals and mineralization conditions of magnetite deposits in the Janggun mine, Korea. Economic and Environmental Geology, 29, 1-9.
  30. Park, K.H. and Chang, H.W., 2005, Pb isotopic composition of Yeonhwa and Janggun Pb-Zn ore deposits and origin of Pb: Role of Precambrian crustal basementand Mesozoic igneous rocks. Journal of Petrological Society of Korea, 14, 141-148.
  31. Pearce, M.A., White, A.J.R., Fisher, L.A., Hough, R.M. and Cleverley, J.S., 2015, Gold deposition caused by carbonation of biotite during late-stage fluid flow. Lithos, 239, 114-127. https://doi.org/10.1016/j.lithos.2015.10.010
  32. Rieder, M., Cavazzini, G., D'Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenhein, S., Koval, P.V., Muller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R., 1999, Nomenclature of the micas. Mineralogical Magazine, 63, 267-279. https://doi.org/10.1180/002646199548385
  33. Tappert, M.C., Rivard, B., Giles, D., Tappert, R. and Mauger, A., 2013, The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geology Reviews, 53, 26-38. https://doi.org/10.1016/j.oregeorev.2012.12.006
  34. Tindle, A.G. and Webb, P.C., 1990, Estimation of lithium contents in trioctahedral micas using microprobe data : application to micas from granitic rocks. European Journal of Mineralogy, 2, 595-610. https://doi.org/10.1127/ejm/2/5/0595
  35. Tischendorf, G., Gottesmann, B., Forster, H.J. and Trumbull, R.B., 1997, On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61, 809-834. https://doi.org/10.1180/minmag.1997.061.409.05
  36. Uribe-Mogollon, C. and Maher, K., 2018, White mica geochemistry of the Copper Cliff porphyry Cu deposit: Insights from a vectoring tool applied to exploration. Economic Geology, 113, 1269-1295. https://doi.org/10.5382/econgeo.2018.4591
  37. Wallace, C.J., 2016, Latite dikes, phyllic alteration and geochemical variations of micas at the copper flat hydrothermal system, Hillsboro, Sierra county, New Mexico, USA. Master thesis, New Mexico Institute of Mining and Technology, New Mexico, USA, 107p.
  38. Wang, R., Cudahy, T., Laukamp, C., Walshe, J.L., Bath, A., Mei, Y., Young, C., Roache, T.J., Jenkins, A., Roberts, M., Barker, A. and Laird, J., 2017, White mica as a hyperspectral tool in exploration for the Sunrise Dam and Kanowna Belle gold deposits, Western Australia. Economic Geology, 112, 1153-1176. https://doi.org/10.5382/econgeo.2017.4505
  39. Yoo, B.C., 2012, Element dispersion by the wallrock alteration of Janggun lead-zinc-silver deposit. Economic and Environmental Geology, 45, 623-641. https://doi.org/10.9719/EEG.2012.45.6.623
  40. Yoo, B.C., 2019, White mica and chemical composition of Samdeok Mo deposit, Republic of Korea. Journal of the Mineralogical Society of Korea, 32, 223-234. https://doi.org/10.9727/jmsk.2019.32.3.223
  41. Yoo, B.C., 2020, Occurrence and chemical composition of white mica and ankerite from laminated quartz vein of Samgwang Au-Ag deposit, Republic of Korea. Korean Journal of Mineralogy and Petrology, 33, 53-64.