• Title/Summary/Keyword: 도체 스트립

Search Result 80, Processing Time 0.03 seconds

Electromagnetic coupling to nearby conducting strip through narrow and wide slits in parallel plate waveguide (평행평판 도파관의 윗면에 위치한 좁은 슬릿과 넓은 슬릿을 통한 도체 스트립에로의 전자기적 결합)

  • 이철훈;이종익;조영기
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.113-116
    • /
    • 2000
  • 평행평판의 원면에 위치한 슬릿을 통하여, 슬릿의 바로 윗 부분에 도체 스트립이 있을 때 일어나는 전자기적 결합 현상에 대하여 살펴보았다. 슬릿의 폭이 파장에 비하여 매우 작을 때와 매우 클 때의 두 경우로 나누어서 기술하였다. 슬릿의 폭이 좁은 경우는 기존의 개구결합(aperture-coupled) 마이크로스트립 안테나에 해당되며 슬릿의 폭이 넓은 경우는 기존의 proximity-coupled 마이르로스트립 안테나에 해당된다. 본 연구의 결과는 기존의 마이크로스트립 안테나의 급전구조와 기존의 마이크로스트립 누설파 안테나의 급전구조 설계에 도움을 줄 것으로 생각된다.

  • PDF

Cavity-type and Parasitic-type Couplings through a Harrow Slit in A Parallel-Plate Waveguide with a Conducting Strip (평행평판도파관의 좁은 슬릿을 통한 도체 스트립과의 캐비티형 결합과 기생형 결합)

  • 이종익;고지환;조영기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.384-392
    • /
    • 2003
  • In this study, the electromagnetic coupling through a narrow transverse slit in the upper wall of a parallel-plate waveguide(PPW) covered by a dielectric slab with a nearby conducting strip on the slab is considered. Two contrastive coupling phenomena, cavity-type and parasitic-type, observed in the geometry have been distinguished by differences in the resonant strip lengths and offset positions, induced strip current, radiation pattern, frequency bandwidth, and electromagnetic field distributions near the coupling slit.

Maximum Coupling Through a Narrow Slit in a Short-Ended Parallel-plate Waveguide with a Nearby Conducting Strip (단락종단된 평행평판 도파관의 좁은 슬릿을 통한 근접 도체스트립과의 최대 결합)

  • Lee, Jong-Ik;Jo, Yeong-Gi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.12
    • /
    • pp.15-21
    • /
    • 2000
  • In this study, the electromagnetic coupling through a narrow slit in the upper wall of a short-ended parallel-plate waveguide(PPW) covered by a dielectric slab with a nearby conducting strip on the slab Is considered for the case that the TEM wave is incident in the PPW. Coupled integral equations whose unknowns are the slit electric field and the induced electric current over the strip are derived and solved numerically by use of the method of moments. From results, it has been observed that most of the incident power can be coupled exterior to the guide by appropriately setting the strip width and position, though the slit is very narrow. In addition, the differences between the radiation phenomena, observed in the cases that the conducting strip and the upper Plate of the PPW form a cavity and that strip behaves like a parasitic element, are discussed.

  • PDF

Non-uniform Leaky Wave Structure Composed of Finite Conducting Strip Array on a Grounded Dielectric Layer (접지된 유전체층 위에 위치한 유한한 도체스트립 배열구조로 구성된 비균일 누설파구조)

  • Lee, Jong-Ig;Lee, Cheol-Hoon;Cho, Young-Ki
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.8
    • /
    • pp.45-53
    • /
    • 1999
  • Electromagnetic scattering by finite number of conducting strips loaded on a grounded dielectric is considered for the TM polarization case from the viewpoints of transmitting(receiving) leaky wave antenna and grating coupler. An integro-differential equation whose unknowns are the induced currents over the strips is derived and solved by use of the method of moments. In order to construct the non-uniform leaky wave structures with specific source(current) distributions over the strips, distances between two adjacent strips and strip width are simultaneously varied along the structure. From some results for the current distributions over the strips and surface wave powers, it is observed that the maximum coupling efficiencies of the appropriately constructed non-uniform leaky wave structures from the viewpoints of both a receiving leaky wave antenna and a grating coupler amount upto 95%, which are about 15% improvements compared with those(80%) of the uniform structures.

  • PDF

Scattering Characteristics of The Infinite Strip Conductor for TM Waves (무한히 긴 도체 스트립의 TM파 산란 특성)

  • 장재성;이상설
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.5
    • /
    • pp.437-443
    • /
    • 1988
  • We calculate the distribution of the current on the strip by the incident waves on the infinite conducting strip line. The boundary equations represented as the spatial domain function become very complicated equations including convolution integral. Transformed it to the spectral domain, we have a very simple equation is composed by some algebraic multiplication of the current density function and Green's function. the acceleration of iteration procedure is achieved by Kastner's method. The result of iteration gives us the optimum value when it satisfies the iteration stop condition presented in this paper. We confirmed that the induced current density distribution on the stripline has been changed as variaties of the width.

  • PDF

Dual-band Open Loop Antenna using Strip-conductor for the RFID and Wireless LAN Application (RFID 및 무선 LAN용 이중대역 도체스트립 개방루프 안테나)

  • Lim, Jung-Hyun;Kang, Bong-Soo;Kim, Heung-Soo;Jwa, Jeong-Woo;Yang, Doo-Yeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.98-104
    • /
    • 2007
  • In this paper, the dual-band open loop antenna using a strip conductor for the RFID reader and Wireless LAN Application, which has a resonant frequency at 910MHz and 2.45 GHz, is proposed. Input impedance of antenna is matched with the feed line of 50 ohm by varying the length and width of sip conductor making up the antenna. The gain and directivity of antenna is enhanced as tuning the length of strip, and as also grooving the teeth shapes on the strip conductor. The size of fabricated antenna is $75mm\times100mm$. The return loss and the gain of fabricated antenna are -11.92 dB, 3.02 dBi at 910 MHz and -21.31 dB, 4.08 dBi at 2.45 GHz, respectively.

Maximum Coupling Phenomena through a Slit Fed by a Flanged Parallel-Plate Waveguide with a Conducting Strip (플랜지된 평행 평판 도파관으로 급전된 슬릿을 통한 도체 스트립과의 최대 결합 현상)

  • Lee Jong-Ig;Cho Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.501-510
    • /
    • 2006
  • In this paper, the electromagnetic coupling through a slit in a flanged parallel-plate waveguide with a conducting strip is studied. The coupled integro-differential equations for the electric field over the slit and the induced current over the strip are derived and solved by use of the method of moments. The characteristics of some types of maximum coupling phenomena are investigated from the examinations of the variations of the equivalent slit admittance and the coupled power against various parameters such as the location of conducting strip, operating frequency, and strip length.

Scattering Characteristics of the Infinite Strip Conductor for TE Waves (무환히 긴 도체 스트립의 TE파 산란 특성)

  • Chang, Jae-Sung;Lee, Sang-Seol
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.18-22
    • /
    • 1989
  • We calculate the distribution of the induced current on the strip by the TE waves on the infinite conducting strip. The boundary equations represented as the spatial domain function becomevery complicated equations including convolution integral. As we transform it to the spectral domain, we have a very simple equation expressed by some algebraic multiplication of the current density function and Green's function. It is shown that the computation result of the induced current distribution gives the optimum value, when the stop condition of iteration presented in this paper are satisfied.

  • PDF

A Study on the Coupling of a Flanged Parallel-Plate Waveguide to a Nearby Conducting Strip from the Viewpoint of Near-Field Scanning Microscopy (근접주사현미경의 관점에서 플랜지된 평행평판 도파관과 근접도체스트립과의 결합에 관한 연구)

  • Lee, Jong-Ig;Ko, Ji-Hwan;Cho, Young-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2260-2266
    • /
    • 2009
  • In this paper, the problem of electromagnetic coupling between a slit fed by a flanged parallel-plate waveguide (FPPW) and a nearby conducting strip parallel to the slit is studied as a simplified problem for a near-field scanning microscopy (NSM). The characteristics of the FPPW are investigated from the results for the variations of the equivalent slit admittance, the reactive powers near the slit inside and outside the FPPW, the magnitude and phase of the voltage reflection coefficient of the TEM wave. The performance of the proposed apparatus as an NSM is tested by examining the effects of various geometrical parameters such as guide height, slit width, strip width, distance between slit and strip, and the ratio of slit width to guide height on the magnitude and phase of the voltage reflection coefficient of the TEM wave. From the results for the voltage reflection coefficient against the strip offset from the slit, it is found that a slit in the FPPW with smaller guide height gives higher scanning resolution and the phase variation is more sensitive than the magnitude variation.