• Title/Summary/Keyword: 대역폭 조절

Search Result 360, Processing Time 0.026 seconds

An Adaptive Packet Loss Recovery Scheme for Realtime Data in Mobile Computing Environment (이동 컴퓨팅 환경에서 실시간 데이터의 적응적 손실 복구 방법)

  • Oh, Yeun-Joo;Baek, Nak-Hoon;Park, Kwang-Roh;Jung, Hae-Won;Lim, Kyung-Shik
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.3
    • /
    • pp.389-405
    • /
    • 2001
  • In these days, we have increasing demands on the real-time services, especially for the multimedia data transmission in both of wired and wireless environments and thus efficient and stable ways of transmitting realtime data are needs. Although RTP is widely used for internet-based realtime applications, it cannot avoid packet losses, due to the use of UDP stack and its underlying layers. In the case of mobile computing applications, the packet losses are more frequent and consecutive because of the limited bandwidth. In this paper, we first statistically analyze the characteristics of packet losses in the wired and wireless communications, based on Gilbert model, and a new packet recovery scheme for realtime data transmission is presented. To reflect the transmission characteristics of the present network environment, our scheme makes the sender to dynamically adjust the amount of redundant information, using the current packet loss characteristic parameters reported by the receiver. Additionally, we use relatively large and discontinuous offset values, which enables us to recover from both of the random and consecutive packet losses. Due to these characteristics, our scheme is suitable for the mobile computing environment where packet loss rates are relatively high and varies rapidly in a wide range. Since our scheme is based on the analytic model form statistics, it can also be used for other network environments. We have implemented the scheme with Mobile IP and RTP/RTCP protocols to experimentally verify its efficiency.

  • PDF

Temperature Compensation of 8 Channel DWDM Multiplexer Using All Optical fiber Mach-Zehnder Structure (전광섬유형 8채널 DWDM용 광다중화기의 온도보상 특성)

  • Chang, Jin-Hyeon;Jung, Jin-Ho;Kim, Young-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8A
    • /
    • pp.697-704
    • /
    • 2005
  • In this paper, Passive Temperature Compensation Technology is apply to 8-channel Optical multiplexer with 1000Hz channel spacing. The 8-channel multiplexer is fabricated by connecting three cascaded Mach Zehnder Interferometer(MZI) of optical fiber type, and each interferometer has the wavelength interval of 100GHz, 2000Hz and 4000Hz, respectively. Furthermore, to acquire uniform insertion loss, it is fabricated by using Wavelength Flatten Coupler(WFC) in which the variation of insertion loss is low. $CO_2$ laser to adjust precisely the wavelength. The optical fiber is very sensitive in the thermal variation around. Thus, When fabrication the prototype, it is applied a technique to compensate the optical thermal effect because the center wavelength at the output is shifted according to the thermal variation around. In summary, The prototype composed by eight cascaded MZI has an insertion loss of 5.5 dB, the bandwidth of 0.8nm at 0.5 dB point, and channel crosstalk of 25 dB. Furthermore, the loss dependent on polarization is measured as 0.06dB. Consequently, the output wavelength is shifted within 0.05 m when the surrounding temperature varies until $60^{\circ}C$

Uplink Congestion Control over Asymmetric Networks using Dynamic Segment Size Control (비대칭 망에서 동적 세그먼트 크기 조정을 통한 상향링크 혼잡제어)

  • Je, Jung-Kwang;Lee, Ji-Hyun;Lim, Kyung-Shik
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.6
    • /
    • pp.466-474
    • /
    • 2007
  • Asymmetric networks that the downlink bandwidth is larger than the uplink bandwidth may cause the degradation of the TCP performance due to the uplink congestion. In order to solve this problem, this paper designs and implements the Dynamic Segment Size Control mechanism which offers a suitable segment size for current networks. The proposed mechanism does not require any changes in customer premises but suppress the number of ACKs using segment reassembly technique to avoid the uplink congestion. The gateway which adapted the Dynamic Segment Size Control mechanism, detects the uplink congestion condition and dynamically measures the bandwidth asymmetric ratio and the packet loss ratio. The gateway reassembles some of segments received from the server into a large segment and transmits it to the client. This reduces the number of corresponding ACKs. In this mechanism, the SACK option is used when occurs the bit error during the transmission. Based on the simulation in the GEO satellite network environment, we analyzed the performance of the Dynamic Segment Size Control mechanism.

The Early Write Back Scheme For Write-Back Cache (라이트 백 캐쉬를 위한 빠른 라이트 백 기법)

  • Chung, Young-Jin;Lee, Kil-Whan;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.101-109
    • /
    • 2009
  • Generally, depth cache and pixel cache of 3D graphics are designed by using write-back scheme for efficient use of memory bandwidth. Also, there are write after read operations of same address or only write operations are occurred frequently in 3D graphics cache. If a cache miss is detected, an access to the external memory for write back operation and another access to the memory for handling the cache miss are operated simultaneously. So on frequent cache miss situations, as the memory access bandwidth limited, the access time of the external memory will be increased due to memory bottleneck problem. As a result, the total performance of the processor or the IP will be decreased, also the problem will increase peak power consumption. So in this paper, we proposed a novel early write back cache architecture so as to solve the problems issued above. The proposed architecture controls the point when to access the external memory as to copy the valid data block. And this architecture can improve the cache performance with same hit ratio and same capacity cache. As a result, the proposed architecture can solve the memory bottleneck problem by preventing intensive memory accesses. We have evaluated the new proposed architecture on 3D graphics z cache and pixel cache on a SoC environment where ARM11, 3D graphic accelerator and various IPs are embedded. The simulation results indicated that there were maximum 75% of performance increase when using various simulation vectors.

Designing a Wideband Antenna Using Diplexer Matching Network for Tactical Vehicles (다이플렉서 정합구조를 이용한 전술차량형 광대역 안테나 설계)

  • Cho, Ji-Haeng;Dong, Moon-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.661-667
    • /
    • 2018
  • Tactical communication radio systems that employ software defined radios(SDRs) have been developed for achieving high-speed data transmissions and voice communications. Such systems possess multiband and multichannel features, and can potentially replace several existing radio systems. This paper proposes a design for wideband antennas by incorporating a diplexer matching network for tactical vehicles. The proposed antenna design includes two radiators(upper and lower) and a diplexer matching network connected to the end of the feed line such that the LC matching networks are interleaved in the lower radiator and spring mount. By employing the diplexer matching network, the designed antenna can perform wideband impedance matching for the fifty ohm feed line. The designed LC networks aid in varying the effective electrical length of the antenna according to the operation frequency. The primary objective behind adjusting the electrical length is to vary the current distribution above and below the LC networks. The proposed antenna was fabricated and tested in an open site. The obtained evaluation results show that the designed antenna can achieve a relative bandwidth of 190% with a VSWR value of 3.5:1, and can attain good antenna gains over VHF and UHF bands.

Cross-layer Design of Joint Routing and Scheduling for Maximizing Network Capacity of IEEE 802.11s based Multi-Channel SmartGrid NAN Networks (IEEE 802.11s 를 사용한 스마트그리드 NAN 네트워크의 최대 전송 성능을 위한 다중 채널 스케쥴링과 라우팅의 결합 설계)

  • Min, Seok Hong;Kim, Bong Gyu;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.25-36
    • /
    • 2016
  • The goal of the SmartGrid is to maximize energy efficiency by exchanging bi-directional real-time power information with the help of ICT(Information and Communication Technology). In this paper, we propose a "JRS-MS" (Joint Routing and Scheduling for Multi-channel SmartGrid) algorithm that uses numerical modeling methods in IEEE 802.11s based STDMA multi-channel SmartGrid NAN networks. The proposed algorithm controls the amount of data transmission adaptively at the link layer and finds a high data-rate path which has the least interference between traffic flows in multi-channel SmartGrid NAN networks. The proposed algorithm improve transmission performance by enhancing network utilization. By comparing the results of performance analysis between the proposed algorithm and the JRS-SG algorithm in the previous paper, we showed that the JRS-MS algorithm can improve transmission performance by maximally utilizing given network resources when the number of flows are increasing in the multi-hop NAN wireless mesh networks.

A Low-Voltage Low-Power Analog Front-End IC for Neural Recording Implant Devices (체내 이식 신경 신호 기록 장치를 위한 저전압 저전력 아날로그 Front-End 집적회로)

  • Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.34-39
    • /
    • 2016
  • A low-voltage, low-power analog front-end IC for neural recording implant devices is presented. The proposed IC consists of a low-noise neural amplifier and a programmable active bandpass filter to process neural signals residing in the band of 1 Hz to 5 kHz. The neural amplifier is based on a source-degenerated folded-cascode operational transconductance amplifier (OTA) for good noise performance while the following bandpass filter utilizes a low-power current-mirror based OTA with programmable high-pass cutoff frequencies from 1 Hz to 300 Hz and low-pass cutoff frequencies from 300 Hz to 8 kHz. The total recording analog front-end provides 53.1 dB of voltage gain, $4.68{\mu}Vrms$ of integrated input referred noise within 1 Hz to 10 kHz, and noise efficiency factor of 3.67. The IC is designed using $18-{\mu}m$ CMOS process and consumes a total of $3.2{\mu}W$ at 1-V supply voltage. The layout area of the IC is $0.19 mm^2$.

Design of the Linked Patch Monopole Antenna and Its SAR Analysis along with Antenna Direction (연결된 패치 형태의 모노폴 안테나 설계 및 안테나 탑재 방향에 따른 SAR 분석)

  • Yang, Joo-Hun;Lee, Seungwoo;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1117-1127
    • /
    • 2012
  • In this paper, the monopole antenna for satisfying GSM900/DCS1800/PCS1900/UMTS2100 services is designed. We can get the characteristic of the low frequency bands by connecting the front patch to the back patch of the antenna and get the low frequency resonance band using a front patch slit. The proposed antenna total volume is $40{\times}98{\times}1.6\;mm^3$, and it is designed on the FR-4 substrate having a relative dielectric constant of 4.4. As measurement result after fabrication, showed that the resonant frequency bandwidths are 156 MHz(828~984 MHz), 708 MHz(1.476~2.184 GHz) based on the return loss of 10 dB, and the radiation patterns show as the omnidirectional shapes for the E-field and H-field. For analyzing the human effects, the proposed antenna is mounted on the mobile-phone case. The averaged peak SAR over 1 g and 10 g is simulated and measured when the input power is 0.25 W. We have checked the variation of the SAR values when the antenna is mounted 4 different directions, then checked the direction having a relatively higher SAR. The results also satisfied the limiting SAR values which are 1.6 W/kg and 2.0 W/kg averaged over 1 g and 10 g tissues respectively.

A 65-nm CMOS Low-Power Baseband Circuit with 7-Channel Cutoff Frequency and 40-dB Gain Range for LTE-Advanced SAW-Less RF Transmitters (LTE-Advanced SAW-Less 송신기용 7개 채널 차단 주파수 및 40-dB 이득범위를 제공하는 65-nm CMOS 저전력 기저대역회로 설계에 관한 연구)

  • Kim, Sung-Hwan;Kim, Chang-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.678-684
    • /
    • 2013
  • This paper describes a low-power baseband circuit for SAW-less LTE-Advanced transmitters. The proposed transmitter baseband circuit consists of a 2nd-order Tow-Thomas type active RC-LPF and a 1st-order passive RC LPF. It can provide a 7 multi-channel cut-off frequencies and wide gain control range of -41 dB ~ 0 dB with a 1-dB step. The proposed 2nd-order active RC-LPF adopts an op-amp in which three other sub-op amps are in parallel connected to reduce DC current for different cutoff frequency. In addition, each sub-op amp adopts both Miller and feed-forward phase compensation method to achieve an UGBW of more than 1-GHz with a small DC power consumption. The proposed baseband circuit is implemented in 65-nm CMOS technology, consuming DC power from 6.3 mW to 24.1 mW from a 1.2V supply voltage for each different cut-off frequency.

A Power Control-Based MF-TDMA Resource Allocation Scheme for Next Generation Military Satellite Communication Systems (차기 군 위성통신망 체계에서 이기종 단말 운용을 고려한 전력제어 기반 MF-TDMA 자원할당 기법)

  • Woo, Soon;Park, Hyung-Won;Lee, Ho-Sub;Yoo, Youn-Sang;Jung, Byung-Gi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1138-1147
    • /
    • 2012
  • In this paper, an efficient power control based MF-TDMA resource allocation scheme is proposed for next generation military satellite communication systems. The proposed scheme has the flexibility is used to support heterogeneous terminals with differ in transmission capabilities. The method can be divided into two parts : burst size calculation and burst structure determination. At first, we estimate the link budget taken into account a dynamic satellite link state variation. Then, applicable ACM level and burst size is chosen. In burst structure determination phase, we reorganize the burst structure in time-frequency domain by controlling limited power, bandwidth, time resources. In particular, we compensate the power spectral density among different terminals to integrate them in same transponder, Furthermore, we increase the packing efficiency by controlling the ACM level of the burst in applicable power spectral density range. Simulation results show that the method increase the spectral efficiency and burst packing efficiency. In addition, slot allocation rejection ratio is successfully reduced.