• Title/Summary/Keyword: 단백질 가수분해 효소

Search Result 380, Processing Time 0.03 seconds

Extraction of Freeze Dried Young Antler Residue by Proteases and HCl (단백질 가수분해 효소 및 염산에 의한 녹용 각질의 추출)

  • 안용근
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.4
    • /
    • pp.388-396
    • /
    • 2003
  • The freeze dried young antler residue was extracted by proteases and hydrochloric acid(HCl). The young antler was extracted by water at 50$^{\circ}C$ and the residue was reacted by proteases for 5 hours at 50$^{\circ}C$. The extraction rate of its residue was 32.8%(absorbance 3.61 at 280nm) of bacteria protease, 23.8%(absorbance 0.69) of papain, and 31.2% (absorbance 2.96) of pepsin. The young antler was extracted by boiling water and the residue was reacted by proteases for 5 hours at 50$^{\circ}C$. The extraction rate of its residue was 45.0%(absorbance 3.61) of bacteria protease, 30.4%(absorbance 0.33) of papain, and 51.2% (absorbance 2.77) of pepsin. The result of HPLC analysis reveals that in 50$^{\circ}C$ water extract and boiling water extract, all high molecular peak was reduced under MW 1,000 by proteases. The result from the extract of young antler residue reacted by HCl for 5 hours at 50$^{\circ}C$ shows that its extraction rate was 45% (absorbance 0.78) in concentration of 0.1N HCl, 61% (absorbance 1.82) in 0.2N, 81% (absorbance 2.29) in 0.4N, and 82.0% (absorbance 3.28) in 2.0N. The result of HPLC analysis also reveals that in the extract by 0.8N HCl, the peak of about MW 70,000 accounted for 78% in total. Protein content of the extract by 0.8N HCl was 8.2%, and content of amino acid was 81.6%, ash was 1.3%, and mineral contents were 0.1 % of Ca, 2.3% of P, 0.8 % of Mg, 3.4% of Na, 0.002% of F by dry base.

Expression of Anthrax Lethal Factor, a Major Virulence Factor of Anthrax, in Saccharomyces cerevisiae (Yeast내에서 탄저병 원인균인 Bacillus anthracis의 치사독소인 Lethal Factor 단백질 발현)

  • Hwang Hyehyun;Kim Joungmok;Choi Kyoung-Jae;Chung Hoeil;Han Sung-Hwan;Koo Bon-Sung;Yoon Moon-Young
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.275-280
    • /
    • 2005
  • Anthrax is an infectious disease caused by the gram-positive bacterium, Bacillus anthracis. Anthrax toxin is a tripartite toxin comprising of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA is the receptor-binding component, which facilitates the entry of LF or EF onto the cytosol. LF is a zinc-dependent metalloprotease, which is a critical virulence factor in cytotoxicity of infected animals. Therefore, it is of interest to develop its potent inhibitors for the neutralization of anthrax toxin. The first step to identify the inhibitors is the development of a rapid, sensitive, and simple assay method with a high-throughput ability. Much efforts have been concentrated on the preparation of powerful assays and on the screening of inhibitors using these system. In the present study, we have tried to construct anthrax lethal factor in yeast expression system to prepare cell-based high-throughput assay system. Here, we have shown the results covering the construction of a new vector system, subcloning of LF gene, and the expression of target gene. Our results are first trial to express LF gene in eukaryote and provide the basic steps in design of cell-based assay system.

Manufacturing of Iron Binding Peptide Using Sericin Hydrolysate and Its Bioavailability in Iron Deficient Rat (실크 세리신 단백질을 이용한 유기 철분제의 제조 및 철분 결핍쥐에서의 생물학적 유용성)

  • Cho, Hye-Jin;Lee, Hyun-Sun;Jung, Eun-Young;Park, So-Yeon;Lim, Woo-Taek;Lee, Jeong-Yong;Yeon, Seong-Ho;Lee, Jin-Chae;Suh, Hyung-Joo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.10
    • /
    • pp.1446-1451
    • /
    • 2010
  • Silk sericin protein was hydrolyzed by seven proteolytic enzymes to examine the effectiveness of the hydrolysates to bind iron. The amino acid nitrogen contents of hydrolysates by Flavourzyme were higher than the others enzymes, and its iron binding capacity showed dose-dependent increase. The bioavailability of iron binding peptide from sericin hydolysates was investigated in iron-deficient rats. Three-week-old male rats were fed iron-deficient diet for three weeks. Rats were divided into four groups (DD: no treated group on iron deficient diet, DD+HI: heme-iron treated group, DD+OI: sericin-Fe, and DD+II: inorganic iron ($FeSO_4$) treated group, and then iron supplemented by injection for one week. After oral administration for one week, the iron contents of serum and liver were significantly higher in DD+OI ($4.2\;{\mu}g/mL$ and $80.1\;{\mu}g/mL$) and DD+HI ($3.2\;{\mu}g/mL$ and $70.6\;{\mu}g/mL$) than DD ($2.0\;{\mu}g/mL$ and $47.9\;{\mu}g/mL$). Hemoglobin content of treated groups was significantly higher than DD, but the significant difference among groups was not shown. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels did not show any significant difference among all groups. Binding iron to peptide from sericin hydolysates seems to improve its bioavailability and to hasten the cure of iron deficiency in experimental rat.

Isolation and Characterization of a Bacteriocin-Producing Lactobacillus sakei B16 from Kimchi (김치에서 박테리오신을 생산하는 Lactobacillus sakei B16의 분리 및 특성 분석)

  • Ahn, Ji-Eun;Kim, Jin-Kyoung;Lee, Hyeong-Rho;Eom, Hyun-Ju;Han, Nam-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.5
    • /
    • pp.721-726
    • /
    • 2012
  • Lactic acid bacteria (LAB) are able to secrete antimicrobial peptides called bacteriocins, which inhibit other bacteria such as pathogenic microorganisms. Therefore, bacteriocin-producing starters can be used as natural biopreservatives for various foods. The objective of this study was to screen and characterize bacteriocin-producing LAB from Kimchi and to investigate their applicability as a starter in Kimchi fermentation. To screen bacteriocin-producing LAB, gram-positive and gram-negative bacteria were used as indicators. To measure the antimicrobial activities of isolates, agar well diffusion assay method was used. According to the results, bacteriocin produced by $Lb.$ $sakei$ B16 showed antimicrobial activity against $Listeria$ $monocytogenes$ ATCC 19115, $Escherichia$ $coli$ KCTC 1467, and$Lactobacillus$ $plantarum$ KTCT 3104. Furthermore, bacteriocin was very stable after treatment with high temperature and high and low pH, but its effects were inhibited by treatment with proteolytic enzymes such as trypsin, proteinase K, and ${\alpha}$-chymotrypsin, revealing their bacteriocin-like protein- based structure. These results suggest that $Lb.$ $sakei$ B16 and its bacteriocin are good candidates as a functional probiotic and natural biopreservative, respectively, in fermented foods.

Endogenous Phenoloxidase Purified from an Earthworm, Lumbricus rubellus (붉은 지렁이(Lumbricus rubellus) 체내로부터 정제한 Phenoloxidase)

  • 백승렬;조은정;유경희;김유삼;서정진;장정순
    • The Korean Journal of Zoology
    • /
    • v.39 no.1
    • /
    • pp.36-46
    • /
    • 1996
  • An endogenous phenoloxidase (EPO) from earthworm, Lumbricus rubellus, has been purified and characterized. The purified EPO using ammonium sulfate fractionation, Blue-2, Phenyl-, and Q-sepharose chromatography steps was revealed in SDS-PAGE as a single protein banri with Mr. of 59 kl)a. A native strudure of the enzyme was examined with an in situ staining of a nondenatudng-PAGE using DL-dopa as a substrate. The result showed that a single band due to the EPO activity was located siighdy above a standard polypeptide with Mr. of 210 kl)a. These fads indicate that the EPO is an oligomeric enzyme. The presence of a monophenolase activity of the purified EPO, which hydroxylates tyrosine to dopa, was confirmed by observing dopachrome accumulation at 475 nm at PH 8.0 with a typical lag phase during 60 mm. of meausrement. A series of inhibition study has been performed for the enzyme with several divalent cation chelators such as phenyithiourea (Flu), 1, lO-phenanthroline, EDTA, and EGTA. Among them, only V'flj inhibited the enzyme with 1C0.5 of 65 MM, which indicated that copper was critical for the catalysis of EPO. The enzyme was maximally active at 35'C and pH 8.0 when L-dopa to dopachrome conversion was spectrophotometricaily monitored at 475 nm. The apparent Km values of P0 for L-opa were obtained as 1.86 mM and 13.8 mM at pH 6.5 and 8.0, respectively. The catalytic efficiencies at both pH were almost identical [(kat/Km)pH8.0/(kcat/Km)pH6.5 = O.92] while the Vmax at p11 8.0 was 6.6-fold higher than that at pH 6.5. This fact may indicate that pH affeds the catalysis at substrate and/or enzyme-substrate complex level rather than the enzyme itself. Taken together, the EPO was an oligomeric enzyme which did not require proteolysis for its activation. These results also indicated that the enzyme can exist, at least, in part as a latent form In vivo, which might be distinct from the prophenoloxidase activating system. Therefore, it is pertinent to consider that there must be certain regulatory molecules or phenomena in L. rubellus which make the 1,0 in a latent form in vivo before the foreign invasions.

  • PDF

Fermentation Characteristics of Soybean Yogurt by Mixed Culture of Bacillus sp. and Lactic Acid Bacteria (고초균과 유산균의 혼합배양에 의한 두유 요구르트의 발효 특성)

  • Yang, Ming;Kwak, Jung Soon;Jang, Seri;Jia, Yuan;Park, Inshik
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.2
    • /
    • pp.273-279
    • /
    • 2013
  • The microorganisms producing high protease activity and acid producing ability were isolated from Chunggukjang and kimchi, which were identified as Bacillus subtilis and Lactobacillus planetarum by morphological, biochemical and nutrient requirement. The attempt was made to produce soybean milk yoghurt by using the isolated microorganisms. The mixed culture of Bacillus subtilis and Lactobacillus plantarum exhibited the lowest pH value of 4.23 and highest titratable acidity of 0.88% compared to those of single cultures at $37^{\circ}C$ for 32 hrs, and their total viable count was $4.09{\times}10^8$ $cfu/m{\ell}$. The ${\alpha}$-amylase activity was the highest in culture of Bacillus subtilis after incubation for 24 hrs, while protease activity was most produced in mixed culture of Bacillus subtilis and Lactobacillus plantarum. The amounts of reducing sugars were steadily decreased as soy milk fermentation progressed.

Quality Stability of High Pressure Boiled Extract of Ogol Chicken during Storage Periods (오골계 증탕액의 저장 및 관능 특성)

  • 채현석;안종남;유영모;박범영;조수현;김진형;이종문;최양일
    • Korean Journal of Poultry Science
    • /
    • v.29 no.4
    • /
    • pp.279-286
    • /
    • 2002
  • This study was conducted to examine quality stability during storage periods, herb high pressure boiled extract(HPBE)(T$_1$), Korean Ogol chicken HPBE(T$_2$), cross-bred Ogol chicken HPBE(T$_3$), cross-bred Ogol chicken meat hydrolyzed with flavourzyme(T$_4$) were pouch packaged and stored at 37$\^{C}$. After each period, TBARS, VBN, pH, total microbial counts and sensory properties were determined and the results were as follows. There was no noticeable difference in TBARS value until 42 days at the ambient environment among the treatments, but T$_4$ showed a significantly higher TBARS value at 56 days. There was a tendency for a higher protein decomposition as storage time increased, and in particular at 56 days, T$_1$ group showed a significantly higher values than other groups. Given to the sensory properties in which overall sensory preference decreased after 42 day, it was considered that the maximum storage time for the extract was less than 42 days at 37$\^{C}$.

Growth Inhibitory Activity of Enterococcus faecium Isolated from Bovine Intestinal Tract against Enterobacter sakazakii (소 장관 유래 Enterococcus faecium의 Enterobacter sakazakii에 대한 생육저해활성)

  • Park, Ju-Hui;Yoon, Sung-Sik;Park, Young-Seo
    • Food Science of Animal Resources
    • /
    • v.28 no.1
    • /
    • pp.99-104
    • /
    • 2008
  • A lactic acid bacterium showing growth inhibitory activity against Enterobacter sakazakii was isolated from bovine intestinal tracts. From biochemical and molecular biological studies, the isolate was identified and named as Enterococcus faecium JH95. This strain was resistant to kanamycin and streptomycin at a concentration of $100{\mu}g/mL$. E. faecium JH95 had high antimicrobial activity against food-borne pathogens such as Escherichia coli O157:H7, Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, and Clostridium perfrigens. The culture supernatant of this strain did not have antimicrobial activity. The culture broth of this strain failed to show the antimicrobial activity by heat treatment at $100^{\circ}C$ for 5 min or by pretense treatments for 2 hr. This result suggested that the putative antimicrobial substance produced by E. faecium JH95 is likely a protein which is not secreted into culture medium.

Antifungal Mechanism of Pseudomonas stutzeri YPL-l for Biocontrol of Fusarium solani causing Plant Root Rot (식물근부균 Fusarium solani에 대한 Pseudomonas stutzeri YPL-1의 생물학적 방제기작)

  • 임호성;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.81-88
    • /
    • 1990
  • For the selection of powerful antagonistic bacterium for biological control of soilborne Fusarium solani causing root rot of many important crops, the best YPL-1 strain was selected among 300 strains of bacteria isolated from rhizosphere in ginseng root rot-suppressive soil. The strain was identified to be a species to Pseudomonas stutzeri. With in vitro fungal inhibition tests, antagonistic substance of P. stutzeri YPL-1 against F. solani was presumed to be heat unstable, macromolecular substances such as protein. Also, it was shown that antifungal activity of P. stutzeri YPL-1 increased in proportion to its chitinase production. P. stutzeri YPL-M122 (chi-, lam -) which was deprived of the productivity of chitinase and laminarinase by NTG mutagenesis had lost antifungal activity, completely. And P. stutzeri YPL-MI53 (chi-) had only 4.1% of its antifungal activity. P. stutzeri YPL-1 was not able to produce any extracellular siderophore in iron-deficent minimal medium. It is confident that the antifungal mechanism of P. stutzeri YPL-1 for biocontrol of F. solani depends on lysis rather than antibiosis :the mechanism of lysis appears to involve enzymatic degradation of the cell will components of F. solani by hydrolytic enzymes of more chitinase and less laminarinase.

  • PDF

Comparison of Feed Efficiency Between Rotifers Enriched Lipid-contents to Enrichment and Enhanced Digestive Enzymes Activity to Starch (영양강화 Rotifer와 효소활성 향상 Rotifer의 먹이효율 비교)

  • Kwon, O-Nam;Park, Heum-Gi
    • Journal of Aquaculture
    • /
    • v.22 no.1
    • /
    • pp.105-111
    • /
    • 2009
  • In this study, we carried out an experiment for estimation the larval digestibility in aspects which digestive enzymatic activities and nutrition of the rotifers, Brachionus rotundiformis. Thus we enhanced the digestive enzymatic activity through the addition of starch for the increase of digestibility of rotifer (starch-rotifer), and compared with the feed efficiency through rearing of the olive flounder, Paralichthys olivaceus used rotifer lipid-enriched with Algamac $2000^{(R)}$ (CE-rotifer). The digestive enzyme activities (except for TG-lipase), total protein contents, total essential amino acid, essential amino acids (methionin and phenylalanine) of starch-rotifer (the rotifer used a starch as additive, and enriched not) was assayed significantly higher than CE-rotifer (P<0.05). And total lipid, lipid classes (except for sterol) and fatty acids as DHA and EPA showed higher in CE-rotifer than starch-rotifer (P<0.05). But, sterol contents and ST/TG ratio were shown significantly higher in starch-rotifer (P<0.05). The flounder larvae supplied the two rotifers showed standard length and body weight that not significantly differed with ranges $3.72{\sim}3.79\;mm$ and $32.9{\sim}37.8\;mg$/larva on 6 days after hatching (DAH), respectively (P>0.05). However, these of 12 DAH showed the values of significantly higher to $5.94{\pm}0.249\;mm$, $144.0{\pm}23.86\;mg$/larva and $26.2{\pm}12.13%$ in standard length, body weight and survival in CE-flounder than that of starch-flounder (P<0.05). The hydrolytic enzymatic activities of flounder larvae severally supplied the two rotifers showed the significantly higher activities in acidic -amylase, neutral -amylase, TG-lipase, lysozyme and acidic phosphatase in starch-flounder on 5 DAH (P<0.05). But neutral $\alpha$-amylase, three proteases and two phosphatases of CE-flounder on 11 DAH showed the significantly higher activities than that of starch-flounder (P<0.05). Therefore, for the flounder, Paralichthys olivaceus larvae just depleted yolk was more beneficial to supply the feed, rotifer, enhanced the digestibility than to supply the feed lipid-enriched for aspect of larval digestibility up to 6 DAH, thereafter nutrition of absorption due to the development of digestive organs suggested that enrichment effect appeared with larval somatic growth. Consequently, investigation more detailed about the larval digestive physiological and nutritional requirement variations after 6 DAH will be necessary, thereafter.