• Title/Summary/Keyword: 단면 테이퍼

Search Result 20, Processing Time 0.029 seconds

방전 가공을 이용한 미세 구멍 가공 시 발생하는 테이퍼 형상의 제어

  • 김동준;이상민;이영수;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.254-254
    • /
    • 2004
  • 미세 방전 가공은 전도성 재료에 미세 구멍을 가공할 때 주로 적용되는 방법이다. 그러나 미세 방전가공을 이용하여 구멍을 가공할 때 직경이 일정한 공구를 사용하더라도 입구와 출구의 직경에는 차이가 생긴다. 구멍의 벽면과 공구사이에는 2차 방전이 발생하고 상대적으로 2차 방전의 영향을 많이 받는 입구가 출구보다 직경이 커지게 된다. 이 때문에 미세 구멍의 단면 형상은 깊이 방향으로 테이퍼가 생기게 되며, 이로 인해 진직 구멍을 가공할 수 없게 된다. 따라서 이 논문에서는 이러한 테이퍼 형상을 제거하여 진직 구멍을 가공하는 방법에 관해 연구하였다.(중략)

  • PDF

Dynamic Characteristics of Composite Thin-Walled Beams with a Chord wise Asymmetric Cross-Section: I. Single-Cell (시위 방향 비대칭 단면의 복합재료 박벽보의 동특성 연구: I. 단일-셀)

  • Kim, Keun-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.41-49
    • /
    • 2018
  • In this study, the theoretical dynamic characteristics of a thin-walled composite beam with a single-cell of chordwise asymmetric cross-section was studied. Mathematical modeling was done by considering the transverse shear effects, the warping restraint effects, the constant taper ratio in the longitudinal direction of the beam, and the geometrical cross-section ratio. The mass coefficients, stiffness coefficients, and Eigen frequencies of the selected section were investigated. In particular, the effects of the taper ratio and cross-section ratio of the model on the Eigen frequencies were analyzed and compared when the asymmetry of the section was considered and the warping function was not corrected.

Dynamic Characteristics of Composite Thin-Walled Beams with a Chord-Wise Asymmetric Cross-Section: II. Multi-Cell (시위 방향 비대칭 단면의 복합재료 박벽보의 동특성 연구: II. 다중-셀)

  • Kim, Keun-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.51-59
    • /
    • 2019
  • Subsequently, Part I [1], which was about the single-cell model, a composite thin-walled beam with a multi-cell of chord-wise asymmetric cross-section, was selected in this study. Moreover, the theoretical dynamic characteristics of the model were analyzed. For this analysis, mathematical modeling was performed by considering the warping restraint effects, transverse shear effects, taper ratio and cross-section ratio. Similar to part I, the mass, stiffness coefficients and Eigen frequencies of the multi-cell section considered were investigated. In particular, the comparison between the multi-cell and single-cell sections and the effects of the cross-section ratio and taper ratio of the model on the Eigen frequencies were analyzed. However, the results compared when the asymmetry of the section was considered and warping function were not corrected.

Vibration Analysis of Rotating Blades with the Cross Section Taper Considering the Pre-twist Angle and the Setting Angle (초기 비틀림각 및 장착 각의 영향을 고려한 단면 테이퍼진 회전 블레이드의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.10-21
    • /
    • 2010
  • Equations of chordwise and flapwise bending motions for the vibration analysis of rotating pre-twisted blades having tapered cross section and setting angle are derived by using hybrid deformation variable modeling. The two motions are couples to each other due to the pre-twisted angle of the beam cross section. The derived equations are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating pre-twisted blades having tapered cross section and orientation angle are investigated. The eigenvalue loci veering phenomena are also investigated and discussed in this work.

Vibration Analysis of a Rotating Cantilever Beam Having Tapered Cross Section (테이퍼진 단면을 가진 회전 외팔보의 진동해석)

  • Yoo, Hong-Hee;Lee, Jun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.348-353
    • /
    • 2008
  • A vibration analysis for a rotating cantilever beam with the tapered cross section is presented in this study. The stiffness changes due to the stretching caused by centrifugal inertia forces when a tapered cantilever beam rotates about the axis perpendicular to its longitudinal axis. When the cross section of cantilever beam are assumed to decrease constantly, the mass and stiffness also change according to the variation of the thickness and width ratio of a tapered cantilever beam. Such phenomena result in variations of natural frequencies and mode shapes. Therefore it is important to the equations of motion in order to be obtained accurate predictions of these variations. The equations of motion of a rotating tapered cantilever beam are derived by using hybrid deformation variable modeling method and numerical results are obtained along with the angular velocity and the thickness and width ratio.

  • PDF

Vibration Analysis of a Rotating Blade Considering Pre-twist Angle, Cross Section Taper and a Concentrated Mass (초기 비틀림 각과 단면 테이퍼 그리고 집중질량을 갖는 회전하는 블레이드의 진동해석)

  • Kim, Hyung Yung;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.338-346
    • /
    • 2013
  • Equations of motion of a rotating blade considering pre-twist angle, cross section taper and a concentrated mass are derived using the hybrid deformation variable modeling method. For the modeling of a concentrated mass which is located at an arbitrary position of the blade, a Dirac delta function is employed for the mass density function. The final equations for the vibration analysis are transformed into a dimensionless form using several dimensionless parameters. The effects of the dimensionless parameters on the vibration characteristics of the rotating blade are investigated through numerical analysis.

Vibration analysis of rotating blades considering the cross section taper, the pre-twist angle, and the setting angle (단면 테이퍼, 초기 비틀림각, 그리고 장착 각의 영향을 고려한 회전 블레이드의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.288-295
    • /
    • 2009
  • Equations of chordwise and flapwise bending motions for the vibration analysis of rotating pre-twisted blades having tapered cross section and orientation angle are derived by using hybrid deformation variable modeling. The two motions are couples to each other due to the pre-twisted angle of the beam cross section. The derived equations are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating pre-twisted blades having tapered cross section and orientation angle are investigated. The eigenvalue loci veering phenomena is also investigated and discussed in this work.

  • PDF

Vibration Analysis of a Rotating Cantilever Beam Having Tapered Cross Section (테이퍼진 단면을 가진 회전 외팔보의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.363-369
    • /
    • 2009
  • A vibration analysis for a rotating cantilever beam with the tapered cross section is presented in this study. The stiffness changes due to the stretching caused by centrifugal inertia forces when a tapered cantilever beam rotates about the axis perpendicular to its longitudinal axis. When the cross section of cantilever beam are assumed to decrease constantly, the mass and stiffness also change according to the variation of the thickness and width ratio of a tapered cantilever beam. Such phenomena result in variations of natural frequencies and mode shapes. Therefore it is important to the equations of motion in order to be obtained accurate predictions of these variations. The equations of motion of a rotating tapered cantilever beam are derived by using hybrid deformation variable modeling method and numerical results are obtained along with the angular velocity and the thickness and width ratio.

Vibration Analysis of a Rotating Multi-Packet Blade System Having Tapered Cross Section (회전하는 테이퍼 단면 다중 패킷 블레이드 시스템의 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.832-837
    • /
    • 2008
  • A modeling method for the modal analysis of a multi-packet blade system having tapered cross section undergoing rotational motion is presented in this paper. Blades are idealized as tapered cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters including tapered ratio and the number of packets as well as blades on the modal characteristics of the system are investigated with some numerical examples.

  • PDF

Three-Dimensional Vibration Analysis of Deep, Nonlinearly Tapered Rods and Beams with Circular Cross-Section (원형단면의 깊은 비선형 테이퍼 봉과 보의 3차원 진동해석)

  • 심현주;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.251-260
    • /
    • 2003
  • A three dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of deep, tapered rods and beams with circular cross section. Unlike conventional rod and beam theories, which are mathematically one-dimensional (1-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components u/sup r/, u/sub θ/ and u/sub z/, in the radial, circumferential, and axial directions, respectively, are taken to be sinusoidal in time, periodic in , and algebraic polynomials in the r and z directions. Potential (strain) and kinetic energies of the rods and beams are formulated, the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies of the rods and beams. Novel numerical results are tabulated for nine different tapered rods and beams with linear, quadratic, and cubic variations of radial thickness in the axial direction using the 3D theory. Comparisons are also made with results for linearly tapered beams from 1-D classical Euler-Bernoulli beam theory.