• Title/Summary/Keyword: 다중위상 지연고정루프

Search Result 5, Processing Time 0.023 seconds

121.15MHz Frequency Synthesizers using Multi-phase DLL-based Phase Selector and Fractional-N PLL (다중위상 지연고정루프 기반의 위상 선택기와 분수 분주형 위상고정루프를 이용하는 121.15 MHz 주파수 합성기)

  • Lee, Seung-Yong;Lee, Pil-Ho;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2409-2418
    • /
    • 2013
  • Two frequency synthesizers are proposed to generate a clock for a sub-sampler of an on-chip oscilloscope in this paper. These proposed frequency synthesizers are designed by using a multi-phase delayed-locked loop (DLL)-based phase selector and a fractional-N phase-locked loop (PLL), and they are analyzed by comparing simulation results of each frequency synthesizer. Two proposed frequency synthesizers are designed using a 65-nm CMOS process with a 1V supply and output the clock with the frequency of 121.15 MHz when the frequency of an input clock is 125 MHz. The designed frequency synthesizer using a multi-phase DLL-based phase selector has the area of 0.167 $mm^2$ and the peak-to-peak jitter performance of 2.88 ps when it consumes the power of 4.75 mW. The designed frequency synthesizer using a fractional-N PLL has the area of 0.662 $mm^2$ and the peak-to-peak jitter performance of 7.2 ps when it consumes the power of 1.16 mW.

A 125 MHz CMOS Delay-Locked Loop with 32-phase Output Clock (32 위상의 출력 클럭을 가지는 125 MHz CMOS 지연 고정 루프)

  • Lee, Kwang-Hun;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.137-144
    • /
    • 2013
  • A delay-locked loop (DLL) that generates a 32-phase clock with the operating frequency of 125 MHz is introduced. The proposed DLL uses a delay line of $4{\times}8$ matrix architecture to improve a differential non-linearity (DNL) of the delay line. Furthermore, a integral non-linearity (INL) of the proposed DLL is improved by calibrating phases of clocks that is supplied to four points of an input stage of the $4{\times}8$ matrix delay line. The proposed DLL is fabricated by using $0.11-{\mu}m$ CMOS process with a 1.2 V supply. The measured operating frequency range of the implemented DLL is 40 MHz to 280 MHz. At the operating frequency of 125MHz, the measurement results shows that the DNL and INL are +0.14/-0.496 LSB and +0.46/-0.404 LSB, respectively. The measured peak-to-peak jitter of the output clock is 30 ps when the peak-to-peak jitter of the input clock is 12.9 ps. The area and power consumption of the implemented DLL are $480{\times}550{\mu}m^2$ and 9.6 mW, respectively.

A 125 MHz CMOS Delay-Locked Loop with 64-phase Output Clock (64-위상 출력 클럭을 가지는 125 MHz CMOS 지연 고정 루프)

  • Lee, Pil-Ho;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.259-262
    • /
    • 2012
  • This paper describes a delay-locked loop (DLL) that generates a 64-phase clock with the operating frequency of 125MHz. The proposed DLL use a $4{\times}8$ matrix-based delay line to improve the linearity of a delay line. The output clock with 64-phase is generated by using a CMOS multiplex and a inverted-based interpolator from 32-phase clock which is the output clock of the $4{\times}8$ matrix-based delay line. The circuit for an initial phase lock, which is independent on the duty cycle ratio of the input clock, is used to prevent from the harmonic lock of a DLL. The proposed DLL is designed using a $0.18-{\mu}m$ CMOS process with a 1.8 V supply. The simulated operating frequency range is 40 MHz to 200 MHz. At the operating frequency of a 125 MHz, the worst phase error and jitter of a 64-phase clock are +11/-12 ps and 6.58 ps, respectively.

  • PDF

A 166MHz Phase-locked Loop-based Frequency Synthesizer (166MHz 위상 고정 루프 기반 주파수 합성기)

  • Minjun, Cho;Changmin, Song;Young-Chan, Jang
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.714-721
    • /
    • 2022
  • A phase-locked loop (PLL)-based frequency synthesizer is proposed for a system on a chip (SoC) using multi-frequency clock signals. The proposed PLL-based frequency synthesizer consists of a charge pump PLL which is implemented by a phase frequency detector (PFD), a charge pump (CP), a loop filter, a voltage controlled oscillator (VCO), and a frequency divider, and an edge combiner. The PLL outputs a 12-phase clock by a VCO using six differential delay cells. The edge combiner synthesizes the frequency of the output clock through edge combining and frequency division of the 12-phase output clock of the PLL. The proposed PLL-based frequency synthesizer is designed using a 55-nm CMOS process with a 1.2-V supply voltage. It outputs three clocks with frequencies of 166 MHz, 83 MHz and 124.5MHz for a reference clock with a frequency of 20.75 MHz.

Design of a 26ps, 8bit Gated-Ring Oscillator Time-to-Digital Converter using Vernier Delay Line (버니어 지연단을 이용한 26ps, 8비트 게이티드 링 오실레이터 시간-디지털 변환기의 설계)

  • Jin, Hyun-Bae;Park, Hyung-Min;Kim, Tae-Ho;Kang, Jin-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.2
    • /
    • pp.7-13
    • /
    • 2011
  • This paper presents a Time-to-Digital Converter which is a key block of an All-Digital Phase Locked Loop. In this work, a Vernier Delay Line is added in a conventional Gated Ring Oscillator, so it could get multi-phases and a high resolution. The Gated Ring Oscillator uses 7 unit delay cell, the Vernier Delay Line is used each delay cell. So proposed Time-to-Digital Converter uses total 21 phases. This Time-to-Digital Converter circuit is designed and laid out in $0.13{\mu}m$ 1P-6M CMOS technology. The proposed Time-to-Digital Converter achieves 26ps resolution, maximum input signal frequency is 100MHz and the digital output of proposed Time-to-Digital Converter are 8-bits. The proposed TDC detect 5ns phase difference between Start and Stop signal. A power consumption is 8.4~12.7mW depending on Enable signal width.