• 제목/요약/키워드: 논증 기하

검색결과 59건 처리시간 0.019초

수학교사들의 내용지식이 학생들의 기하 평가에 미치는 영향

  • 고상숙;장훈
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제19권2호
    • /
    • pp.445-452
    • /
    • 2005
  • 본 연구는 중 고등학교 교사 50명에 대하여 기하 문제의 논증기하적 또는 해석기하적 문제해결 전략이 학생들의 평가에 어떤 영향을 미치는가를 조사한 것이다. 중학교에서 고등학교로 진학하면 도형의 문제에 대한 해석기하적인 문제해결 능력은 교육과정 상 대단히 중요하게 가르쳐야 할 내용이다. 유클리드 기하에 바탕을 둔 논증기하의 지식은 좌표평면의 도형을 방정식으로 나타내고 연구하는 해석기하의 기본이다. 그럼에도 불구하고 많은 학생들은 논증기하적 문제해결을 선호하는 반면 해석기하적 문제해결은 어려워한다. 또한 논증기하적 문제 형태에는 논증기하적 문제해결 전략, 해석기하적 문제 형태에는 해석기하적 문제해결 전략을 구사하는 경향을 보인다. 본 연구는 중 고등학교 교사들의 기하 문제에 대한 내용 지식이 학생 평가에 미치는 영향에 초점이 맞추어져 있다.

  • PDF

중학교 학생들의 기하 과제 해결을 위한 논증 활동의 특징 탐색 - Verheij의 반박 유형을 중심으로 - (An Investigation on the Properties of the Argumentation for Students' Performing Geometric Tasks in Middle School-Based on the Type of the Rebuttal of Verheij)

  • 황혜정;홍성기
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제27권4호
    • /
    • pp.701-725
    • /
    • 2017
  • 본 연구에서는 학생들이 스스로 대화에 참여하여 자신과 상대방 간의 생각을 나누는 과정, 즉 반성, 변화 및 설득해 가는 과정에서 논증 활동을 경험하는 기회를 가지는 것이 중요하다고 판단하여 수학 수업 시간에 학생들이 과제를 해결하는 과정에서 이뤄지는 논증 활동을 면밀히 살펴보고자 하였다. 또한, 논증 활동 요소 중 하나인 '반박'에 중점을 두어 학생들이 수학 과제를 해결하는 과정에서 나타나는 반박의 유형이 무엇인지, 또 논증 활동이 일어나는 상황에서 반박이 논증 요소 중 무엇을 목표로 하는지 살펴보고자 하였으며, 이때 Verheij(2005)가 제안한 다섯 가지 반박 유형에 기초하여 탐색하고자 하였다. 이를 위하여 중학교 3학년 4명의 학생들을 대상으로 두 개의 기하 과제 중심의 토론 수업을 약 50분씩 두 차례 진행하고, 한 차례 반 구조화된 면담을 실시하였다. 본 연구를 통하여 학생들의 논증 활동에서 반박 유형에 초점을 두고 논증 활동을 세밀하게 탐색해 봄으로써 논증 활동에 대한 보다 견고한 이해를 돕고자 하였다.

고등학교 도형의 방정식 단원에서 논증기하의 활용에 대한 연구 (A Study on Application of Euclid's Geometry at Unit of Equation of Figures in High School 1st Grade)

  • 권영인;서보억
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제21권3호
    • /
    • pp.451-466
    • /
    • 2007
  • 학교수학에서 기하는 논증기하, 해석기하, 변화기하 등 다양한 접근이 가능한 영역이다. 현행 교육과정에서 중학교의 경우에서 논증기하를 주로 다루고, 고등학교 1학년에서는 해석기하를 주로 다루고 있다. 본 연구에서는 현재 고등학교 1학년 도형의 방정식 단원 분석과 이를 학습한 학생들의 문제해결 방법에 대한 분석을 기초로 하여 중학교에서 배우는 논증기하를 고등학교에서 어떻게 이용할 수 있는지에 대한 활용 가능성, 즉 어떻게 논증기하와 해석기하 내용을 서로 결합을 이룰 것인가에 대해 고찰한다. 이를 통해 학생들이 도형영역의 수학적 의미를 이해하는데 큰 도움을 주고 더불어 수정된 교육과정의 교과서 구성에 도움을 주리라 기대한다.

  • PDF

초등영재학급을 대상으로 그래핑 계산기의 지오보드를 활용한 Pick 공식의 탐구 과정에서 나타난 논증활동의 분석 (Analysis on the Argumentation in Exploring the Pick's Formula Using the Geoboard of Graphing Calculator in Math-Gifted 5 Grade Class)

  • 김진환;강영란
    • 대한수학교육학회지:학교수학
    • /
    • 제18권1호
    • /
    • pp.85-103
    • /
    • 2016
  • 이 연구는 5학년 영재반 수업에서 TI-73 그래핑 계산기의 지오보드를 사용하여 Pick의 공식을 찾아가는 과정에서 나타난 수업담화로부터 논증과 논증활동의 특성을 알아보고자 하였다. 분석을 위한 자료는 수업 비디오, 음성녹음록, 활동지가 있으며 Toulmin의 논증 도식을 분석의 준거로 사용하였다. 연구 결과 그래핑 계산기의 지오보드는 주어진 조건의 다양한 격자다각형에 대한 넓이를 계산해줌으로써 실험과 관찰의 환경을 조성하고 '자료${\rightarrow}$주장'의 구성과 이의 정당화를 위한 보증, 지지, 한정어, 반박의 논증활동을 유발시키는 도구적 역할을 하였다. 경계점의 수와 내점의 수로 Pick의 공식을 유도할 때 '집단적 논증'의 방식이 나타났으며 교사는 논증활동을 지휘하는 역할, 지식을 판단하는 권위자의 역할을 하였다.

교과지식으로서의 유클리드 기하와 벡터기하의 연결성 (Mathematical Connections Between Classical Euclidean Geometry and Vector Geometry from the Viewpoint of Teacher's Subject-Matter Knowledge)

  • 이지현;홍갑주
    • 대한수학교육학회지:학교수학
    • /
    • 제10권4호
    • /
    • pp.573-581
    • /
    • 2008
  • 학교기하에서는 논증기하, 해석기하, 벡터기하 등의 다양한 접근을 다루고 있는데, 특히 이러한 유클리드 기하에 대한 다양한 접근 사이의 연결성은 기하학적 방법과 대수적 방법의 연 결성으로 볼 수 있다. 본 연구는 교과지식의 측면에서, 논증기하증명에서 벡터와 내적의 대수적 성질의 의미를 분석함으로서 학교 수학에서 기하학적 증명과 벡터와 내적을 이용한 대수적 증명의 연결성에 대하여 고찰하였다.

  • PDF

GSP를 활용한 기하수업에서 수준별 학생의 논증기하와 해석기하의 연결에 관한 연구 (A Study on the Effects of Using GSP of Level Differentiated Students in Connecting Demonstrative Geometry and Analytic Geometry)

  • 도정철;손홍찬
    • 한국학교수학회논문집
    • /
    • 제18권4호
    • /
    • pp.411-429
    • /
    • 2015
  • 본 연구에서는 기하 문제해결에서 GSP의 활용이 수준별로 학생들에게 어떤 영향을 끼치는지에 대해 알아보았고, 특히 논증기하와 해석기하의 연결성에 어떤 영향을 주었는지에 관하여 살펴보았다. 구체적으로 살펴보면 상 수준의 학생은 기하 문제를 해결하기 위해 바로 형식적인 대수적 식을 사용하는 것을 선호하였고, 중 하 수준의 학생의 경우에는 GSP의 도움을 받아 대수식을 찾고자 하는 노력을 보였다. 특히 하수준의 경우에는 문제해결에는 실패하였지만 GSP의 도움을 받아 문제를 이해할 수 있는 경우가 많았다. 논증기하와 해석기하의 연결성과 관련하여 GSP의 역동적인 환경은 형식화된 해석기하적 표현의 의미를 한 눈에 파악할 수 있도록 도움을 주었고, 해석기하적 접근 방식을 사용한 풀이를 전개한 후 문제해결의 반성 단계에서 그 결과의 의미를 시각화하여 전체적으로 이해할 수 있도록 도움을 줄 수 있음을 알 수 있었다.

GeoGebra를 활용한 논증기하와 연결된 해석기하 수업자료 개발 및 적용 (Designing and Implementing High School Geometry Lessons Emphasizing the Connections between Euclidean and Analytic Geometries)

  • 김은혜;이수진
    • 한국학교수학회논문집
    • /
    • 제19권4호
    • /
    • pp.373-394
    • /
    • 2016
  • 현 고등학교 1학년 기하교육 실제를 보면 도형의 방정식에 대한 개념 이해와 그와 관련된 문제를 대수적인 방법에 치중하여 해결하도록 지도하고 있는데, 이러한 접근방법은 좌표평면이 도입되는 해석기하의 특성을 고려하더라도 개념을 처음 다루는 학생들에게 자연스럽지 않으며 너무 추상적이다. 본 연구에서는 학생들이 중학교에서 경험한 논증기하 중심의 사고를 고등학교에서 자연스럽게 연결하여 사용할 수 있도록 문헌연구를 토대로 논증기하와의 연결성을 강조한 GeoGebra 기반 해석기하 수업자료를 개발하고 이를 실제 학교 수업 현장에 적용하여 그 안에서 나타나는 학생들의 특징을 관찰하였다. 분석 결과, 학생들은 자신들의 직관적인 이해를 기반으로 중학교에서 학습한 삼각형 닮음의 성질을 이용하여 직선의 기울기가 일정하다는 성질을 유도해 낼 수 있었으며, 학생 주도적인 정당화 활동을 하는 모습을 보였다. 물론 그 안에서 교사의 적절한 발문과 GeoGebra의 활용이 중요한 역할을 하였다. 본 연구결과를 토대로 향후 중 고등학교 기하 영역 수학교과서의 변화 방향을 제시하고 이를 통해 고등학교 1학년 학생들이 도형의 방정식 단원에서 배우게 될 해석기하의 수학적 의미를 좀 더 깊이 이해하고, 기하 영역 내 연결성을 인식하여 수학적 사고력을 길러주는데 도움을 줄 것으로 기대한다.

중학교 기하 교재의 '원론' 교육적 고찰 (A Study on Teaching of the Elements of Geometry in Secondary School)

  • 우정호;권석일
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제16권1호
    • /
    • pp.1-23
    • /
    • 2006
  • 본 논문은 중학교 평면 논증기하를 원론 교육적 입장에서 분석 고찰한 것이다. 이를 위하여 먼저 'Euclid 원론'에 따른 고전적 원론 교육을 목적, 내용, 방법의 측면에서 분석하고 그 역사를 개관하였다. 이어 고전적 원론 교육에 대한 비판적 논의를 고찰하고 Clairaut의 '기하학 원론'과 Branford의 역사-발생적 기하 교육론을 중심으로 역사-발생적 기하 원론 교육을 목적, 내용, 방법의 측면에서 분석하였다. 그리고 이러한 분석과 근세 이후 기하교과서의 변천과정에 비추어 현재의 중학교 논증기하 교재의 기본가정을 분석하고, 그 내용 및 체제를 가설적 작도, 정리의 제시순서, 증명진술 방법, 정의제시 방법, 연습문제로 나누어 분석하였다. 마지막으로 이러한 논의를 바탕으로, 현 중학교 기하교재의 기본적 관점을 탐색하고 두 원론의 상보적 통합 방안을 모색하였다.

  • PDF

컴퓨터를 통한 수학적 사고력 신장의 가능성 모색

  • 조한혁;안준화;우혜영
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제14권
    • /
    • pp.197-215
    • /
    • 2001
  • 최근 수학적 사고력 연구가 구체적 수학내용에 기반한 활동과 조작에 대한 연구보다는 활동이나 조작을 통한 결과로 수학적 사고력에 접근하는 일회성 연구로 이루어지는 경향이 있다. 본고에서는 교육 내용을 선정하기 위해 학교수학에서 아동들이 어떤 수학적 사고를 하는데 장애을 겪는지에 주목하여, 이러한 장애를 극복하는 것을 통해 수학적 사고력의 신장을 생각해보고자 하였다. 이에 대수에서는 문자도입에 따른 추상적 상징의 수용과 이용부분에서, 기하에서는 논증기하의 증명도입과정에서 형식적, 연역적 사고 시작으로 아동이 수학적 사고에 어려움을 겪는다는 사살에 주목하였다. 특히 논증 기하의 연역적, 형식적 증명은 논리와 추론이 바탕이 되어야 한다. 그런데 논리와 추론은 고등학교 1학년과정 집합과 명제부분에 들어있어 아동은 논리와 추론에 대한 어떤 경험도, 교육도 받지 않은 상태에서 증명을 하게 된다. 이에 교육 내용으로 수학적 사고력을 신장을 위해 가장 필요한 내용이 논증 기하가 도입되기 이전에 초등학교 5,6학년 아동을 대상으로한 논리와 추론교육이라고 본다. 또한 교육 방법으로는 컴퓨터를 이용한 교육공학적 접근을 하고자 하였다. 교육공학적 접근이 적극 권장되는 교육적 현실과 정규교육과정에서 이를 받아들일만한 시간적 여유가 없음을 감안하여, 교과 내용과 연계된 컴퓨터 교육을 제안하는 바이다. 이에 논리 및 추론 교육은 컴퓨터 교육으로 초등학교의 특기적성 시간이나 정규수업 시간에 이용할 것을 제안한다. 논리와 추론교육을 위해 무엇을 어떻게 가르칠 것인가에 대한 답으로 논리와 추론교육에 적합한 수학적 내용으로 크게 이산수학과 중등 기하의 초등화하여 탐구하도록 하는 내용을, 교육 방법 측면에서는 논리와 추론 교육을 위한 LOGO 기반 마이크로월드를 설계, 이용하여 수학적 사고력을 신장시키고자 한다. 여기까지가 수학적 사고력을 위한 가능성을 모색한 것이라면 후속연구로 이러한 가능성을 실험연구로 검증하고자 한다.

  • PDF

삼각형의 외심 정의와 증명에 관한 고찰 (A study on the definition and proof of the circumcenter of a triangle)

  • 변희현
    • 한국학교수학회논문집
    • /
    • 제14권2호
    • /
    • pp.227-239
    • /
    • 2011
  • 삼각형의 외심은 중학교 2학년에 처음 도입되는 논증기하의 부분에서 다루어진다. 증명을 통해 도형의 성질을 다루는 과정에 본질적으로 상당한 어려움이 내포되어 있긴 하나, 학생들 은 교과서에서 다루는 외심과 관련한 명제의 증명을 학습하는데 특히 많은 어려움을 겪는다. 따라서 본 연구에서는 우리나라 교과서에서 다루는 외심의 정의와 증명을 오랜기간 논증기 하의 교과서로 사용된 유클리드 원론 및 현행 미국 교과서의 방식과 비교함으로써 삼각형의 외심 지도에 관한 시사점을 끌어내고자 한다.

  • PDF