• Title/Summary/Keyword: 논증

Search Result 389, Processing Time 0.024 seconds

Automated Scoring of Scientific Argumentation Using Expert Morpheme Classification Approaches (전문가의 형태소 분류를 활용한 과학 논증 자동 채점)

  • Lee, Manhyoung;Ryu, Suna
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.3
    • /
    • pp.321-336
    • /
    • 2020
  • We explore automated scoring models of scientific argumentation. We consider how a new analytical approach using a machine learning technique may enhance the understanding of spoken argumentation in the classroom. We sampled 2,605 utterances that occurred during a high school student's science class on molecular structure and classified the utterances into five argumentative elements. Next, we performed Text Preprocessing for the classified utterances. As machine learning techniques, we applied support vector machines, decision tree, random forest, and artificial neural network. For enhancing the identification of rebuttal elements, we used a heuristic feature-engineering method that applies experts' classification of morphemes of scientific argumentation.

An Analysis on Argumentation in the Task Context of 'Monty Hall Problem' at a High School Probability Class (고등학교 확률 수업의 '몬티홀 문제' 과제 맥락에서 나타난 논증과정 분석)

  • Lee, Yoon-Kyung;Cho, Cheong-Soo
    • School Mathematics
    • /
    • v.17 no.3
    • /
    • pp.423-446
    • /
    • 2015
  • This study aims to look into the characteristics of argumentation in the task context of 'Monty Hall problem' at a high school probability class. As a result of an analysis of classroom discourses on the argumentation between teachers and second-year students in one upper level class in high school using Toulmin's argument pattern, it was found that it would be important to create a task context and a safe classroom culture in which the students could ask questions and refute them in order to make it an argument-centered discourse community. In addition, through the argumentation of solving complex problems together, the students could be further engaged in the class, and the actual empirical context enriched the understanding of concepts. However, reasoning in argumentation was mostly not a statistical one, but a mathematical one centered around probability problem-solving. Through these results of the study, it was noted that the teachers should help the students actively participate in argumentation through the task context and question, and an understanding of a statistical reasoning of interpreting the context would be necessary in order to induce their thinking and reasoning about probability and statistics.

The Manipulation Argument: Ernie, Diana, and Lightning Strike (조작논증과 어니, 다이애나, 번개)

  • Kim, Seahwa
    • Korean Journal of Logic
    • /
    • v.22 no.2
    • /
    • pp.233-251
    • /
    • 2019
  • In this paper, I raise objections to Sungsu Kim's argument that Sartorio's hard-line reply to the manipulation argument fails. In attacking Sartorio's argument, Sungsu Kim claims that there are two problems with Sartorio's. I argue that Sungsu Kim's argument fails by responding to these two problems. With respect to the first problem, I provide a new example of dilution of responsibility. With respect to the second problem, I argue that, contrary to what Sungsu Kim assumes, for Sartorio's argument to succeed, our intuition that Ernie is responsible in the Lightning Strike Scenario does not have to be as strong as our intuition that Ernie is not responsible in the Diana scenario.

An analysis of trends in argumentation research: A focus on international mathematics education journals (논증 연구의 동향 분석: 국외의 수학교육 학술지를 중심으로)

  • Jinam Hwang;Yujin Lee
    • The Mathematical Education
    • /
    • v.63 no.1
    • /
    • pp.105-122
    • /
    • 2024
  • This study analyzed the research trends of 101 articles published in prominent international mathematics education journals over 24 years from 2000, when NCTM's recommendation emphasizing argumentation was released, until September 2023. We first examined the overall trend of argumentation research and then analyzed representative research topics. We found that students were the focus of the studies. However, several studies focused on teachers. More studies were examined in secondary school than in elementary school, and many were conducted in argumentation in classroom contexts. We also found that argumentation research is becoming increasingly popular in international journals. The representative research topics included 'teaching practice,' 'argumentation structure,' 'proof,' 'student understanding,' and 'student reasoning.' Based on our findings, we could categorize three perspectives on argumentation: formal, contextual, and purposeful. This paper concludes with implications on the meaning and role of argumentation in Korean mathematics education.

Exploring Preservice Teachers' Science PCK and the Role of Argumentation Structure as a Pedagogical Reasoning Tool (교수적 추론 도구로서 논증구조를 활용한 과학과 예비교사들의 가족유사성 PCK 특성 탐색)

  • Youngsun Kwak
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.1
    • /
    • pp.56-71
    • /
    • 2023
  • The purpose of this study is to explore the role and effectiveness of argumentation structure and the developmental characteristics of science PCK with Earth science preservice teachers who used argumentation structure as a pedagogical reasoning tool. Since teachers demonstrate PCK in a series of pedagogical reasoning processes using argumentation structures, we explored the characteristics of future-oriented family resemblance-PCK shown by preservice science teachers using argumentation structures. At the end of the semester, we conducted in-depth interviews with 15 earth science preservice teachers who had experienced lesson design and teaching practice using the argumentation structure. Qualitative analysis including a semantic network analysis was conducted based on the in-depth interview to analyze the characteristics of preservice teachers' family resemblance-PCK. Results include that preservice teachers organized their classes systematically by applying the argumentation structure, and structured classes by differentiating argumentation elements from facts to conclusions. Regarding the characteristics of each component of the argumentation structure, preservice teachers had difficulty finding warrant, rebuttal, and qualifier. The area of PCK most affected by the argumentation structure is the science teaching practice, and preservice teachers emphasized the selection of a instructional model suitable for lesson content, the use of various teaching methods and inquiry activities to persuade lesson content, and developing of data literacy and digital competency. Discussed in the conclusion are the potential and usability of argument structure as a pedagogical reasoning tool, the possibility of developing science inquiry and reasoning competency of secondary school students who experience science classes using argumentation structure, and the need for developing a teacher education protocol using argumentation structure as a pedagogical reasoning tool.

Logic for Engineers: a teaching.learning model for logic in 'Presentation and Discussion' (공학도를 위한 논리: '발표와 토론'을 위한 논리 교수.학습 모형)

  • Yang, Eun-Suk
    • Korean Journal of Logic
    • /
    • v.13 no.2
    • /
    • pp.83-116
    • /
    • 2010
  • In this paper we provide a teaching learning method for logic in debate, in particular, in debate of engineers. First we criticize the concept of argument and the Toulmin model on argument used in education for debate. We next provide a general method for learning arguments needed in debate. Finally, we suggest the hypothetico-inferential method and the model for inference to the best choice as argument methods coming in useful in debate education for engineers.

  • PDF

Analysis on the Argumentation in Exploring the Pick's Formula Using the Geoboard of Graphing Calculator in Math-Gifted 5 Grade Class (초등영재학급을 대상으로 그래핑 계산기의 지오보드를 활용한 Pick 공식의 탐구 과정에서 나타난 논증활동의 분석)

  • Kim, Jin Hwan;Kang, Young Ran
    • School Mathematics
    • /
    • v.18 no.1
    • /
    • pp.85-103
    • /
    • 2016
  • This study was to find characteristics of argumentation derived from a discourse in a math-gifted 5 grade class, which was held for finding a Pick's formula using Geoboard function of TI-73 calculator. For the analysis, a video record of the class, transcript of its voice record, and activity paper were used as data and Toulmin's argument schemes were applied as analysis standard. As a result of the study, we found that the graphing calculator helped the students to create an experimental environment that graphing a grid-polygon and figuring out its area. Furthermore, it also provided a basic demonstration through 'data->claim' composition and reasoning activities which consisted of guarantee, warrant, backing, qualifier and refutal for justifying. The basic argumentation during the process of deriving the Pick's theorem by the numbers of boundary points and inner points was developed into a 'collective argumentation' while a teacher took a role of a conductor of the argumentation and an authorizer on the knowledge at the same time.

Arguments from Physics in Mathematical Proofs : the Center of Gravity of a Triangle (수학적 증명에서의 물리적 논증 : 삼각형의 무게중심)

  • Kim, Seong-A
    • Journal of Science Education
    • /
    • v.34 no.1
    • /
    • pp.175-184
    • /
    • 2010
  • We agree with Hanna and Jahnke's assertion on the use of arguments from physics in mathematical proofs and analyze their educational example of the use of arguments from physics in the proof of the center of gravity of a triangle. Moreover, we suggest practical models for the center of gravity of a triangle for the demonstration in a classroom. Comparing with the traditional mathematical arguments, the role of concepts and models from physics in arguments from physics will be clearly pointed out. Also, the necessity for arguments from physics in the classroom will be discussed in this paper.

  • PDF

Teaching Practices Emphasizing Mathematical Argument for Fifth Graders (초등학교 5학년 학생들의 수학적 논증을 강조한 수업의 실제)

  • Hwang, JiNam
    • Education of Primary School Mathematics
    • /
    • v.26 no.4
    • /
    • pp.257-275
    • /
    • 2023
  • In this study, we designed and implemented a instruction emphasizing mathematical argument for fifth-grade students and analyzed the teaching practices. Through a literature review related to instruction emphasizing mathematical argument, we organized a teaching model of five phases that explain why the general claim that the sum of consecutive odd numbers equals a square number is true: 1) noticing patterns, 2) articulating conjectures, 3) representing through visual model, 4) arguing based on representation, 5) comparing and contrasting. Then, we analyzed the argumentation stream by phases to observe how the instruction emphasizing mathematical argument is implemented in the elementary classroom. Based on the results of this study, we discuss the implications of teaching a mathematical argument in elementary school.

The Patterns and the Characteristics of Students’ Interactive Argumentation in the Small-group Discussions (소집단 토론에서 발생하는 학생들의 상호작용적 논증 유형 및 특징)

  • 이선경
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.1
    • /
    • pp.79-88
    • /
    • 2006
  • study was to explore the patterns and the characteristics of students' interactive argumentation in the middle school science classes. The data were collected by observing and audiotaping the small-group discussions and the transcribed data were analyzed through the lens of Toulmin's argument frame. As the results, the three argumentation patterns, which could be combined different ideas with or without their warrants, were presented. In the first pattern, the argumentation including the claim and its warrant without any different ideas, the students argumentation did not have any conflict with each other in the discussions. In the second, the argumentation of different ideas without their warrants, the different ideas did not affect the claim. In the last, the argumentation of different ideas with their warrants, the students elaborated the claim through collaborative argumentation in search for the warrant. To understand and improve student discussions in the science classrooms, conclusion and implications were discussed based on the results.