An Analysis on Argumentation in the Task Context of 'Monty Hall Problem' at a High School Probability Class

고등학교 확률 수업의 '몬티홀 문제' 과제 맥락에서 나타난 논증과정 분석

  • Received : 2015.08.07
  • Accepted : 2015.09.04
  • Published : 2015.09.30

Abstract

This study aims to look into the characteristics of argumentation in the task context of 'Monty Hall problem' at a high school probability class. As a result of an analysis of classroom discourses on the argumentation between teachers and second-year students in one upper level class in high school using Toulmin's argument pattern, it was found that it would be important to create a task context and a safe classroom culture in which the students could ask questions and refute them in order to make it an argument-centered discourse community. In addition, through the argumentation of solving complex problems together, the students could be further engaged in the class, and the actual empirical context enriched the understanding of concepts. However, reasoning in argumentation was mostly not a statistical one, but a mathematical one centered around probability problem-solving. Through these results of the study, it was noted that the teachers should help the students actively participate in argumentation through the task context and question, and an understanding of a statistical reasoning of interpreting the context would be necessary in order to induce their thinking and reasoning about probability and statistics.

본 연구의 목적은 고등학교 확률 수업의 '몬티홀 문제' 과제 맥락에서 나타난 논증과 정의 특징을 알아보는 것이다. 고등학교 2학년 상 수준 한 학급의 학생을 대상으로 교사와 학생 사이의 논증과정에 관한 수업담화를 Toulmin의 논증패턴을 이용하여 분석한 결과, 논증 중심의 담화 공동체로 만들기 위한 과제 맥락과 학생들이 질문하고 반박할 수 있는 안전한 교실 문화의 중요성이 밝혀졌다. 또한 복잡한 문제를 함께 해결해 나가는 논증과정을 통해 학생들은 수업에 더 몰입하게 되었으며, 실제적인 경험적 맥락은 개념의 이해를 풍부하게 해 주었다. 그러나 논증과정에서 나타난 추론은 통계적 추론이 아니라 대부분 확률 문제 풀이 위주의 수학적 추론이 나타났다. 이러한 연구 결과는 맥락에 따라 결과를 해석하는 과정에서 학생들의 통계적 추론이 일어남을 교사가 이해할 필요가 있고, 과제 맥락과 질문을 통해 학생들이 논증과정에 적극적으로 참여하도록 해야 한다는 확률 통계 수업에 대한 시사점을 제공할 수 있다.

Keywords

References

  1. 강현영, 송은영, 조진우, 이경화 (2011). 통계적 논증활동을 강조한 통계수업의 효과에 대한 사례연구. 수학교육학연구, 21(4), 399-422.
  2. 김성도 (1998). 가추법의 화용론적 함의. 담화와 인지, 5(2), 23-40.
  3. 도모노 노리오 (2007). 행동경제학 (이명희 번역.). 서울: 지형. (원본출판 2006).
  4. 민병곤 (2001). 논증 이론의 현황과 국어 교육의 과제. 국어교육학연구, 12(1), 237-285.
  5. 박영신 (2006). 교실에서의 실질적 과학 탐구를 위한 과학적 논증 기회에 대한 이론적 고찰. 한국지구과학회지, 27(4), 401-415.
  6. 박정숙 (2014). 몬티홀 딜레마에 대한 학생들의 이해와 수업적용. 한국수학사학회지, 27(3), 211-231. https://doi.org/10.14477/jhm.2014.27.3.211
  7. 배식한 (2011). 논증과 논증행위: 비판적 사고 교육의 관점에서. 철학사상, 42, 151-183.
  8. 오택근, 박미미, 이경화 (2014). 수학적 토론에서 의사소통적 갈등과 인지 갈등의 관계. 수학교육학연구, 24(2), 125-143.
  9. 이윤경, 조정수 (2015). 고등학교 통계 수업 시간에 나타난 교사-학생간 수업담화 분석: Mehan의 이론을 중심으로. 학교수학, 17(2), 203-222.
  10. 이정아 (2012). 과학수업담화 연구의 배경과 전개. 한국초등교육, 23(4), 141-156.
  11. 이종학 (2011). 학교 수학에 활용 가능한 확률. 통계 영역에서의 역사적 패러독스. 한국수학사학회지, 24(4), 119-141.
  12. 한제준 (2013). 계절 변화 수업의 논증과정 및 논증적 담화 전략 분석. 미출판 박사학위논문, 한국교원대학교, 청주.
  13. Anthony, G., & Hunter, R. (2010). Communities of mathematical inquiry to support engagement in rich tasks. In B. Kaur & J. Dindyal (Eds.), Mathematical applications and modelling: Yearbook 2010 (pp. 21-39). Toh Tuck Link, Singapore: World Scientific Publishing.
  14. Ben-Zvi, D., & Garfield, J. B. (2004). The challenge of developing statistical literacy, reasoning, and thinking. Dordrecht, the Netherlands: Kluwer Academic Publishers.
  15. Boero, P. (1999). Argumentation and mathematical proof: A complex, productive, unavoidable relationship in mathematics and mathematics education. International Newsletter on the Teaching and Learning of Mathematical Proof, 7(8).
  16. Breton, P., & Gauthier, G. (2000). 논증의 역사 (장혜영 번역.). 서울: 커뮤니케이션북스. (원본 출판 2000).
  17. Chaput, B., Girard, J. C., & Henry, M. (2011). Frequentist approach: Modelling and simulation in statistics and probability teaching. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematicschallenges for teaching and teacher education (pp. 85-95). New York: Springer.
  18. Chinn, C., & Anderson, R. (1998). The structure of discussions inteded to promote reasoning. The Teachers College Record, 100(2), 315-368.
  19. Cobb, P., Boufi, A., McClain, K., & Whitenack, J. (1997). Reflective discourse and collective reflection. Journal for Research in Mathematics Education, 28, 258-277. https://doi.org/10.2307/749781
  20. Crusius, T. W., & Channell, C. E. (1998). The aims of argument: A rhetoric and reader. Houston: Mayfield Publishing Company.
  21. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  22. Dunham, W. (2004). 수학의 천재들 (조정수 번역.). 서울: 경문사. (원본출판 1991).
  23. Eichler, A. (2008). Teachers' classroom practice and students' learning. In C. Batanero, G. Burrill, C. Reading, & A. Rossman (Eds.), Joint ICMI/IASE study: Teaching statistics in school mathematics. Challenges for teaching and teacher education. Proceedings of the ICMI Study 18 and 2008 IASE Round Table Conference. Monterrey, Mexico: International Commission on Mathematical Instruction and International Association for Statistical Education. Online: www.stat.auckland.ac.nz/-iase/publication
  24. Eichler, A. (2011). Statistics teachers and classroom practices. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics-challenges for teaching and teacher education (pp. 175-186). New York: Springer.
  25. Erduran, S., Simon, S., & Osborne, J. (2004). TAPing into argumentation: Developments in the application of Toulmin's argument pattern for studying science discourse. Science Education, 88(6), 915-933. https://doi.org/10.1002/sce.20012
  26. Furtak, E. M., Hardy, I., Beinbrech, C., Shavelson, R. J., & Shemwell, J. T. (2010). A framework for analyzing evidence-based reasoning in science classroom discourse. Educational Assessment, 15(3-4), 175-196. https://doi.org/10.1080/10627197.2010.530553
  27. GAISE (2005). Guidelines for assessment and instruction in statistics education (GAISE) college report. The American Statistical Association (ASA). Retrieved June 4, 2014, from www.amstat.org/education/gaise/GAISECollege.htm
  28. Garfield, J. (2002). The challenge of developing statistical reasoning. Journal of Statistics Education, 10(3). www.amstat.org/publications/jse/v10n3/garfield.htm
  29. Garfield, J., & Ben-Zvi, D. (2008a). Developing students statistical reasoning: Connecting research and teaching practice. New York: Springer.
  30. Garfield, J., & Ben-Zvi, D. (2008b). Research on teaching and learning statistics. In J. Garfield & D. Ben-Zvi. (Eds.), Developing students statistical reasoning: Connecting research and teaching practice (pp. 21-43). New York: Springer.
  31. Garfield, J., & Ben-Zvi, D. (2008c). Creating statistical reasoning environments. In J. Garfield & D. Ben-Zvi. (Eds.), Developing students statistical reasoning: Connecting research and teaching practice (pp. 45-63). New York: Springer.
  32. Granberg, D., & Brown, T. A. (1995). The Monty Hall dilemma. Personality and Social Psychology Bulletin, 21(7), 711-723. https://doi.org/10.1177/0146167295217006
  33. Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66(1), 3-21. https://doi.org/10.1007/s10649-006-9059-8
  34. Jimenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). "Doing the lesson" or "doing science": Argument in high school genetics. Science Education, 84(6), 757-792. https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
  35. Khisty, L., & Chval, K. (2002). Pedagogic discourse and equity in mathematics: When teachers' talk matters. Mathematics Education Research Journal, 14, 154-168. https://doi.org/10.1007/BF03217360
  36. Kopperschmidt, J. (1985). An analysis of argumentation. In T. A. Dijk (Ed.), Handbook of discourse analysis, vol 2 (pp. 159-168). New York: Academic Press.
  37. Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229-269). Hillsdale, NJ: Erlbaum.
  38. Kutzler, B. (2003). CAS as pedagogical tools for teaching and learning mathematics. In T. Fey, A. Cuoco, C. Kieran, L. McMullin, R. M. Zbiek (Eds.), Computer algebra systems in secondary school mathematics education (pp. 53-71). Reston, VA: The National Council of Teachers of Mathematics, INC.
  39. Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American Educational Research Journal, 27, 29-63. https://doi.org/10.3102/00028312027001029
  40. Lovett, M. (2001). A collaborative convergence on studying reasoning processes: A case study in statistics. In S. M. Carver & D. Klahr (Eds.), Cognition and instruction: Twenty-five years of progress (pp. 347-384). Mahwah, NJ: Lawrence Erlbaum Associates.
  41. Magalhaes, M., & Martinho, M. H. (2012). The role of graphical calculator in developing mathematical argumentation. Proceedings of the 12th International Congress on Mathematical Education Topic Study Group 19 (pp. 3888-3897). Seoul, Korea.
  42. Maloney, J., & Simon, S. (2006). Mapping children's discussions of evidence in science to assess collaboration and argumentation. International Journal of Science Education, 28(15), 1817-1841. https://doi.org/10.1080/09500690600855419
  43. Marks, H. M. (2000). Student engagement in instructional activity: Patterns in the elementary, middle, and high school years. American Educational Research Journal, 37(1), 153-184. https://doi.org/10.3102/00028312037001153
  44. McCrone, S. S. (2005). The development of mathematical discussion: An investigation in a fifth grade classroom. Mathematical Thinking and Learning, 7(2), 111-133. https://doi.org/10.1207/s15327833mtl0702_2
  45. Miller, M. (1987). Argumentation and cognition. In M. Hickmann (Ed.), Social and functional approaches to language and thought (pp. 225-249). San Diego, CA: Academic Press.
  46. Newmann, F. M., Wehlage, G. G., & Lamborn, S. (1992). The significance and sources of student engagement. In F. Newmann (Ed.), Student engagement and achievement in American secondary schools (pp. 11-39). Amsterdam, NY: Teachers College Press.
  47. Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553-576. https://doi.org/10.1080/095006999290570
  48. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020. https://doi.org/10.1002/tea.20035
  49. Otte, M. (2006). Mathematical epistemology from a Peircean semiotic point of view. Educational Studies in Mathematics, 61(1-2), 11-38. https://doi.org/10.1007/s10649-006-0082-6
  50. Patterson, M. C., Harmel, B., & Friesen, D. (2010). A spreadsheet simulation of the Monty Hall Problem. American Journal of Business Education, 3(2), 1-14.
  51. Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66(1), 23-41. https://doi.org/10.1007/s10649-006-9057-x
  52. Pedemonte, B., & Reid, D. (2011). The role of abduction in proving processes. Educational Studies in Mathematics, 76(3), 281-303. https://doi.org/10.1007/s10649-010-9275-0
  53. Peirce, C. S. (1958). Collected papers of Charles Sanders Peirce, Vols I-VI. C. Hartshorne & P. Weiss (Eds.). Cambridge, MA: Harvard University Press.
  54. Rosenhouse, J. (2009). The Monty Hall problem: The remarkable story of math's most contentious brain teaser. Madison, NY: Oxford University Press.
  55. Sacks, H., & Jefferson, G. (1995). Lectures on conversation. Oxford, UK: Blackwell.
  56. Salmon, W. C. (2008). 논리학 (곽강제 번역.). 서울: 박영사. (원본출판 1984).
  57. Sampson, V., & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447-472. https://doi.org/10.1002/sce.20276
  58. Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge, UK: Cambridge University Press.
  59. Shaughnessy, J. M. (2007). Research on statistics learning and reasoning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: a project of the national council of teachers of Mathematics (pp. 957-1010). Charlotte, NC: Information Age Publishing.
  60. Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2-3), 235-260. https://doi.org/10.1080/09500690500336957
  61. Sprenger, J. (2010). Probability, rational single-case decisions and the Monty Hall problem. Synthese, 174(3), 331-340. https://doi.org/10.1007/s11229-008-9455-y
  62. Stephan, M., & Rasmussen, C. (2002). Classroom mathematical practices in differential equations. The Journal of Mathematical Behavior, 21(4), 459-490. https://doi.org/10.1016/S0732-3123(02)00145-1
  63. Toulmin, S. E. (2003). The uses of argument. Cambridge, UK: Cambridge University Press.
  64. Vincent, J., Chick, H., & McCrae, B. (2005). Argumentation profile charts as tools for analysing students' argumentations. In H. Chick & J. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, Vol. 4 (pp. 281-288). Melbourne, Australia: IGPME.
  65. Walpole, E. (2012). 핵심 확률 및 통계학. (로널드 월폴, 레이먼드 마이어스, 섀런 마이어스, 키잉 예, 김붕선, 유영관, 박종천, 이상호 번역.). New York: Pearson Education. (원본출판 2012).
  66. Walshaw, M., & Anthony, G. (2008). The teacher's role in classroom discourse: A review of recent research into mathrmatics classrooms. Review of Educational Research, 78(3), 516-551. https://doi.org/10.3102/0034654308320292
  67. Weber, K., & Alcock, L. (2005). Using warranted implications to understand and validate proofs. For the Learning of Mathematics, 25(1), 34-51.
  68. Weber, K., Maher, C., Powell, A., & Lee, H. S. (2008). Learning opportunities from group discussions: Warrants become the objects of debate. Educational Studies in Mathematics, 68(3), 247-261. https://doi.org/10.1007/s10649-008-9114-8
  69. Yackel, E. (2001). Explanation, justification and argumentation in mathematics classrooms. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1 (pp. 9-23). Utrecht, Netherlands: IGPME.