• Title/Summary/Keyword: 노출인자

Search Result 487, Processing Time 0.029 seconds

Changes of Mechanical Properties by a Long Term Operation in STACIR/AW Conductor (STACIR/AW 송전선의 장시간 운전에 따른 기계적 물성 변화)

  • Lee, Sung-Doo;Sin, Goo-Yong;Lee, Dong-Il;Jang, Tae-In;Kim, Byung-Geol;Park, Su-Dong;Kim, Shang-Shu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.69-73
    • /
    • 2005
  • ACSR전력선의 송전용량 증가를 위해 개발된 중용량저이도 송전선인 STACIR/AW(Super Thermal-resistant Aluminum alloy Conductors, aluminum-clad Invar-Reinforced)전선은 초내열 Al도체 및 인바강선의 사용으로 비교적 고온에서의 안정적 운전이 가능하다. 그러나 고온 환경에서 장시간 노출된 STAClR/AW전선의 안정적 관리를 위해서는, 열화 된 STACIR/AW 전선의 인장강도, 각 구성소재의 탄성계수, 비틀림 계수 등과 같은 기계적 물성이 장기 운전 모의를 위해 선정된 열화온도, 열화시간 등에 대해 종합적으로 평가될 필요가 있다. 또한 크립 등과 같이 고온응력 부하상태에서의 변형거동과 탄성계수 및 선팽창계수의 온도의존성 등은 전선의 이도관리와 예측을 위해서도 명확히 규명되어야할 중요한 관리 인자이다. 그러나 현재까지는 이들에 대해 수행한 어떠한 연구결과들도 보고 되어 있지 않은 실정이다. 본 연구에서는 STACIR/AW $410mm^2$ 송전선을 장시간 운전의 모의를 위해 가속열화 시키고 가속열화에 따른 STACIR/AW 전선 및 그 구성소재의 강도, 비틀림 특성의 변화를 조사하여 장시간 운전에 따른 STACIR/AW전선의 안정성을 평가하여 보고하고자 하였다.

  • PDF

Analysis of chloride penetration in the marine concrete pier (해양환경 콘크리트 교각의 염소이온 침투해석)

  • Kim, Ki-Hyun;Cha, Soo-Won;Jang, Sung-Yup;Park, Byoung-Sun;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.549-552
    • /
    • 2008
  • Corrosion of reinforcing steel is prohibited under normal condition by the alkalinity of the pore water in the concrete. But the probability of steel corrosion becomes higher when the chloride ions are introduced into the concrete. Steel corrosion is decisive factor for the determination of service life of the marine concrete structures because chloride ions are abundant in the sea. In this paper, chloride penetration analysis for the rectangular pier in the marine environment is performed considering the diffusion movement of chlorides. Result reveals that the chloride concentration in the corner bar is higher than that of in the side bar with rectangular pier. Also the time to the specified accumulation of chloride in the corner bar is much shorter than that in the side bar. Because the corrosion initiation time of corner bar is half as much as that of side bar, service life for the rectangular pier in marine environment should be determined with respect to the coner bar.

  • PDF

Study on the Water Penetration in Mortar by Water Pressure (수압에 따른 모르타르내 수분침투에 관한 연구)

  • Yoo, Jo-Hyeong;Lee, Han-Seung;Cho, Hyeong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.505-508
    • /
    • 2008
  • Concrete is a type of porous materials and is physically and chemically damaged due to exposure to various environments from the placing to the service life. These reactions affect the corrosionof steel bars applied in concrete and that decreases the durability life and strength of such steel bars. Thus, it is very important to insert rust inhibitors into steel bars in the case of a deterioration element that exceeds the critical amount of corrosion in the location of steel bars. However, it is very difficult to guarantee corrosion resistance at the location of steel bars using conventional technology that applies corrosion inhibitors only on the surface of concrete. This study attempts to develop a method that penetrates corrosion inhibitors up to the location of steel bars and investigate the penetration depth of corrosion inhibitors by verifying moisture migration in concrete under an applied pressure.

  • PDF

Molecular Mechanisms through Which Peptidoglycan Induces IL-1β Expression in Monocytic Cells (펩티도글라이칸에 의한 인터루킨-1 베타 발현 기전 연구)

  • Seo, Hyun-Cheol;Kim, Sun-Mi;Lee, Sae-A;Rhim, Byung-Yong;Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1637-1643
    • /
    • 2012
  • This study investigated the effects of PG on IL-$1{\beta}$ expression and determined cellular factors involved in PG-mediated IL-$1{\beta}$ up-regulation in mononuclear cells in order to understand the molecular mechanisms underlying inflammatory responses associated with bacterial pathogen-associated molecular patterns in the diseased artery. Exposure of human monocytic leukemia THP-1 cells to PG resulted in enhanced secretion of IL-$1{\beta}$ and also profound induction of the IL-$1{\beta}$ gene transcript. These effects were abrogated by OxPAPC, an inhibitor of TLR-2/4. Pharmacological inhibitors such as U0126, SP6001250, Akti IV, rapamycin, and DPI also significantly attenuated PG-mediated IL-$1{\beta}$ up-regulation. However, polymyxin B did not influence the IL-$1{\beta}$ expression. This study indicates that PG contributes to vascular inflammation in atherosclerotic plaques by up-regulating expression of IL-$1{\beta}$ via TLR-2, Akt, mTOR, MAPKs, and ROS.

Thermal Behavior of a Pipe-Rack Structure Subjected to Environmental Factors (외부 환경적 요인에 의한 파이프랙 구조물의 열적 거동)

  • Lee, Jong-Han;Lee, Jong-Jae;Kim, Sung-Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.165-170
    • /
    • 2015
  • Pipe-rack structures supporting high temperature and pressure are of great importance to ensure the safety of the operation of the plants. If some damage occurred in the pipe-rack structure, the facilities not only bring damage to the commercial property, but also result in economic losses. Specially, since pipe-rack structures are exposed to various environmental conditions, it is essential to evaluate the thermal behavior of the structure caused by environmental conditions for the appropriate design and maintenance of the pipe-rack structure. Thus, based on a selected, typical pipe-rack structure, a thermal-stress coupled analysis was conducted to evaluate the temperature distributions and thermal stresses of the structure. For this, this study accounted for the operating condition of the pipe and the effect of environmental conditions, Yeosu in South Korea and Saudi Arabia in the Middle East. The results of the study showed the need for accounting for a variance in the environmental factors to evaluate the thermal behavior of the pipe-rack structure along with the working condition of pipe.

Exposure Assessments on Biological Contaminants in Homes of Allergy Patients - Bacteria, Fungi, House Dust Mite Allergen and Endotoxin (알레르기 환자 가정에서 생물학적 유해인자에 대한 노출평가 -세균, 진균, 집먼지 진드기 알레르겐, 내독소를 대상으로)

  • Moon Kyong Whan;Byeon Sang Hoon;Choi Dal Woong;Kim Young Whan;Lee Jang Hee;Lee Eun Il
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.2 s.83
    • /
    • pp.120-126
    • /
    • 2005
  • To assess exposure of allergy patients to a biological environment, measurements were made of levels of airborne bacteria and fungi, house dust endotoxin and mite allergens in homes of 7 allergy patients and 12 healthy families. Concentrations of airborne total bacteria and the ratio of indoor and outdoor concentrations(I/O) in allergy patient's homes were high compared to non-allergy houses. But no significant differences could be shown for the concentration of spores of viable fungi and staphylococcus in indoor air between the homes of allergic patients and healthy families. The results of investigation on house dust mites, Dermatophagoids farinae were detected in all mattress samples and the levels in the allergy patient's homes were generally high, with individual measurements exceeding $2{\mu}g/g$ dust found in $30\%$ samples. In contrast with, Dermatophagoids pteronyssinus were detected in only $60\%$ samples and the concentrations were very low. The levels of endotoxin in dust samples collected from the allergy patient's home mattresses were higher than those of control houses. There was a positive correlation between the endotoxin levels and the house dust mite allergens.

Vulcanization Efficiency of Non-polar Rubber Compounds by Microwave (마이크로파를 이용한 비극성 고무컴파운드의 가황 효율)

  • Jung, U-Sun;Lee, Won-Ki;Lim, Kwon-Tack
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.228-231
    • /
    • 2011
  • The rate of vulcanization of nonpolar ethylene-propylene-diene terpolymer(EPDM)/carbon black compounds was investigated by using hot air and microwave as a heating source. The present study parameters such as heating source, sample thickness, and loading of an additive. The compound thickness was the main factor in the hot air vulcanization. It was due to the poor thermal conductivity of EPDM; that is, the thicker thickness, the lower vulcanization rate. For 100% vulcanization, the compound with 3 mm thickness required 7 min at $250^{\circ}C$ in the hot air system. However, the vulcanization of EPDM compounds by microwave system was not affected by the thickness while strongly dependent on the amount of a polar additive, carbon black. A compound with 80 phr of carbon black was perfectly vulcanized within 30 sec. These results suggest that the use of microwave as a heating source is an effective method for the vulcanization of compounds including a polar component.

Time-Variant Characteristics of Organic Thin Film Solar Cell Devices on Plastic Substrates (플라스틱 기판에 제작된 유기박막태양전지의 출력특성 경시변화)

  • No, Im-Jun;Lee, Sunwoo;Shin, Paik-Kyun
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.211-217
    • /
    • 2013
  • Two types of organic thin film solar cell devices with bulk hetero-junction (BHJ) structure were fabricated on plastic substrates using conjugated polymers of $PCDTBT:PC_{71}BM$ and $PTB7:PC_{71}BM$ blended as active channel layer. Time-variant characteristics of the organic thin film solar cell devices were investigated: short circuit current density ($J_{SC}$); open circuit voltage ($V_{OC}$); ; fill factor (FF); power conversion efficiency (PCE, ŋ). All the performance parameters were degraded by progress of the measurement time, while $V_{OC}$ showed the most drastic decrease with time. Possible factors to cause the time-variant alteration of performance parameters were discussed to be clarified.

Understanding Three-dimensional Printing Technology, Evaluation, and Control of Hazardous Exposure Agents (3D 프린팅 기술의 이해, 유해 인자 노출 평가와 제어)

  • Park, Jihoon;Jeon, Haejoon;Oh, Youngseok;Park, Kyungho;Yoon, Chungsik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.241-256
    • /
    • 2018
  • Objectives: This study aimed to review the characteristics of three-dimensional printing technology focusing on printing types, materials, and health hazards. We discussed the methodologies for exposure assessment on hazardous substances emitted from 3D printing through article reviews. Methods: Previous researches on 3D printing technology and exposure assessment were collected through a literature review of public reports and research articles reported up to July 2018. We mainly focused on introducing the technologies, printing materials, hazardous emissions during 3D printing, and the methodologies for evaluation. Results: 3D printing technologies can be categorized by laminating type. Fused deposition modeling(FDM) is the most widely used, and most studies have conducted exposure assessment using this type. The printing materials involved were diverse, including plastic polymer, metal, resin, and more. In the FDM types, the most commonly used material was polymers, such as acrylonitrile-butadiene-styrene(ABS) and polylactic acids(PLA). These materials are operated under high-temperature conditions, so high levels of ultrafine particles(mainly nanoparticle size) and chemical compounds such as organic compounds, aldehydes, and toxic gases were identified as being emitted during 3D printing. Conclusions: Personal desktop 3D printers are widely used and expected to be constantly distributed in the future. In particular, hazardous emissions, including nano sized particles and various thermal byproducts, can be released under operation at high temperatures, so it is important to identify the health effects by emissions from 3D printing. Furthermore, appropriate control strategies should be also considered for 3D printing technology.

ANTI-INFLAMMATORY EFFECTS OF PPARγ ON HUMAN DENTAL PULP CELLS (치수세포에서 PPARγ의 항 염증작용에 관한 연구)

  • Kim, Jeong-Hee
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.3
    • /
    • pp.203-214
    • /
    • 2006
  • Dental pulp is a loose, mesenchymal tissue almost entirely enclosed in the dentin. It consists of cells, ground substance, and neural and vascular supplies. Damage to the dental pulp by mechanical, chemical, thermal, and microbial irritants can provoke various types of inflammatory response. Pulpal inflammation leads to the tissue degradation, which is mediated in part by Matrix metalloproteinase leads to accelerate extracellular matrix degradation with pathological pathway We have now investigated the induction of MMPs and inflammatory cytokines by Lipopolysaccharide (LPS) control of inflammatory mediators by peroxisome proliferator-activated receptors (PPARs). Human dental pulp cells exposed to various concentrations of LPS ($1-10{\mu}g/ml$) revealed elevated levels of MMP-2 and MMP-9 at 24 hrs of culture. LPS also stimulated the production of ICAM-1, VCAM-1, $IL-1{\beta},\;and\;TNF-{\alpha}$. Adenovirus $PPAR{\gamma}\;(Ad/PPAR{\gamma})\;and\;PPAR{\gamma}$ agonist rosiglitazone reduced the synthesis of MMPs, adhesion molecules and pro-inflammatory cytokines. The inhibitory effect of $Ad/PPAR{\gamma}$ was higher than that of $PPAR{\gamma}$ agonist. These result offer new insights in regard to the anti-inflammatory potential of $PPAR{\gamma}$ in human dental pulp cell.