Browse > Article
http://dx.doi.org/10.5352/JLS.2012.22.12.1637

Molecular Mechanisms through Which Peptidoglycan Induces IL-1β Expression in Monocytic Cells  

Seo, Hyun-Cheol (Department of Pharmacology, Pusan National University School of Medicine)
Kim, Sun-Mi (Department of Pharmacology, Pusan National University School of Medicine)
Lee, Sae-A (Department of Pharmacology, Pusan National University School of Medicine)
Rhim, Byung-Yong (Department of Pharmacology, Pusan National University School of Medicine)
Kim, Koanhoi (Department of Pharmacology, Pusan National University School of Medicine)
Publication Information
Journal of Life Science / v.22, no.12, 2012 , pp. 1637-1643 More about this Journal
Abstract
This study investigated the effects of PG on IL-$1{\beta}$ expression and determined cellular factors involved in PG-mediated IL-$1{\beta}$ up-regulation in mononuclear cells in order to understand the molecular mechanisms underlying inflammatory responses associated with bacterial pathogen-associated molecular patterns in the diseased artery. Exposure of human monocytic leukemia THP-1 cells to PG resulted in enhanced secretion of IL-$1{\beta}$ and also profound induction of the IL-$1{\beta}$ gene transcript. These effects were abrogated by OxPAPC, an inhibitor of TLR-2/4. Pharmacological inhibitors such as U0126, SP6001250, Akti IV, rapamycin, and DPI also significantly attenuated PG-mediated IL-$1{\beta}$ up-regulation. However, polymyxin B did not influence the IL-$1{\beta}$ expression. This study indicates that PG contributes to vascular inflammation in atherosclerotic plaques by up-regulating expression of IL-$1{\beta}$ via TLR-2, Akt, mTOR, MAPKs, and ROS.
Keywords
Interleukin-$1{\beta}$; peptidoblycan; THP-1 cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chi, H., Messas, E., Levine, R. A., Graves, D. T. and Amar, S. 2004. Interleukin-1 receptor signaling mediates atherosclerosis associated with bacterial exposure and/or a high-fat diet in a murine apolipoprotein E heterozygote model: pharmacotherapeutic implications. Circulation 110, 1678-1685.   DOI
2 Dinarello, C. A. 1997. Interleukin-1. Cytokine Growth Factor Rev. 8, 253-265.   DOI
3 Dobrina, A., Nardon, E., Vecile, E., Cinco, M. and Patriarca, P. 1995. Leptospira icterohemorrhagiae and leptospire peptidolgycans induce endothelial cell adhesiveness for polymorphonuclear leukocytes. Infect. Immunol. 63, 2995-2999.
4 Galea, J., Armstrong, J., Gadsdon, P., Holden, H., Francis, S. E. and Holt, C. M. 1996. Interleukin-1 beta in coronary arteries of patients with ischemic heart disease. Arterioscler. Thromb. Vasc. Biol. 16, 1000-1006.   DOI
5 Hahn-Windgassen, A., Nogueira, V., Chen, C. C., Skeen, J. E., Sonenberg, N. and Hay, N. 2005. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J. Biol. Chem. 280, 32081-32089.   DOI
6 Kavita, U. and Mizel, S. B. 1995. Differential sensitivity of interleukin-1 alpha and -beta precursor proteins to cleavage by calpain, a calcium-dependent protease. J. Biol. Chem. 270, 27758-27765.   DOI
7 Kavoosi, G., Ardestani, S. K. and Kariminia, A. 2009. The involvement of TLR2 in cytokine and reactive oxygen species (ROS) production by PBMCs in response to Leishmania major phosphoglycans (PGs). Parasitology 136, 1193-1199.   DOI
8 Kawai, T. and Akira, S. 2006. TLR signaling. Cell Death Differ. 13, 816-825.   DOI
9 Kirii, H,. Niwa, T., Yamada, Y., Wada, H., Saito, K., Iwakura, Y., Asano, M., Moriwaki, H. and Seishima, M. 2003. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 23, 656-660.   DOI
10 Laman, J. D., Schoneveld, A. H., Moll, F. L., van Meurs, M. and Pasterkamp, G. 2002. Significance of peptidoglycan, a proinflammatory bacterial antigen in atherosclerotic arteries and its association with vulnerable plaques. Am. J. Cardiol. 90, 119-123.   DOI
11 Langer, M., Malykhin, A., Maeda, K., Chakrabarty, K., Williamson, K. S., Feasley, C. L., West, C. M., Metcalf, J. P. and Coggeshall, K. M. 2008. Bacillus anthracis peptidoglycan stimulates an inflammatory response in monocytes through the p38 mitogen-activated protein kinase pathway. PLoS One 3, e3706.   DOI
12 Lee, S. A., Kim, S. M., Son, Y. H., Lee, C. W., Chung, S. W., Eo, S. K., Rhim, B. Y. and Kim, K. 2011. Peptidoglycan enhances secretion of monocyte chemoattractants via multiple signaling pathways. Biochem. Biophys. Res. Commun. 408, 132-138.   DOI
13 Loppnow, H. and Libby, P. 1990. Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6. J. Clin. Invest. 85, 731-738.   DOI
14 Manning, B. D. and Cantley, L. C. 2007. AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274.   DOI   ScienceOn
15 Miesel, R., Sanocka, D., Kurpisz, M. and Kroger, H. 1995. Antiinflammatory effects of NADPH oxidase inhibitors. Inflammation 19, 347-362.   DOI
16 Moyer, C. F., Sajuthi, D., Tulli, H. and Williams, J. K. 1991. Synthesis of IL-1 alpha and IL-1 beta by arterial cells in atherosclerosis. Am. J. Pathol. 138, 951-960.
17 Sironi, M., Breviario, F., Proserpio, P., Biondi, A., Vecchi, A., Van Damme, J., Dejana, E. and Mantovani, A. 1989. IL-1 stimulates IL-6 production in endothelial cells. J. Immunol. 142, 549-553.
18 Nijhuis, M. M., Pasterkamp, G., Sluis, N. I., de Kleijn, D. P., Laman, J. D. and Ulfman, L. H. 2007. Peptidoglycan increases firm adhesion of monocytes under flow conditions and primes monocyte chemotaxis. J. Vasc. Res. 44, 214-222.   DOI   ScienceOn
19 Shaw, R. J. and Cantley, L. C. 2006. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424-430.   DOI
20 Sica, A., Wang, J. M., Colotta, F., Dejana, E., Mantovani, A., Oppenheim, J. J., Larsen, C. G., Zachariae, C. O. and Matsushima, K. 1990. Monocyte chemotactic and activating factor gene expression induced in endothelial cells by IL-1 and tumor necrosis factor. J. Immunol. 144, 3034-3038.
21 Spagnuolo, G., D'Anto, V., Cosentino, C., Schmalz, G., Schweikl, H. and Rengo, S. 2006. Effect of N-acetyl-L-cysteine on ROS production and cell death caused by HEMA in human primary gingival fibroblasts. Biomaterials 27, 1803-1809.   DOI
22 Suzuki, H., Shibano, K., Okane, M., Kono, I., Matsui, Y., Yamane, K. and Kashiwagi, H. 1989. Interferon-gamma modulates messenger RNA levels of c-sis (PDGF-B chain), PDGF-A chain, and IL-1 beta genes in human vascular endothelial cells. Am. J. Pathol. 134, 35-43.
23 Thobe, B. M., Frink, M., Hildebrand, F., Schwacha, M. G., Hubbard, W. J., Choudhry, M. A. and Chaudry, I. H. 2007. The role of MAPK in Kupffer cell toll-like receptor (TLR) 2-, TLR4-, and TLR9-mediated signaling following trauma-hemorrhage. J. Cell. Physiol. 210, 667-675.   DOI
24 Wang, Q., Dziarski, R., Kirschning, C. J., Muzio, M. and Gupta, D. 2001. Micrococci and peptidoglycan activate TLR2, MyD88, IRAK, TRAF, NIK, IKK, NF-kappaB signal transduction pathway that induces transcription of interleukin-8. Infect. Immunol. 69, 2270-2276.
25 Barksby, H. E., Lea, S. R., Preshaw, P. M. and Taylor, J. J. 2007. The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders. Clin. Exp. Immunol. 149, 217-225.   DOI   ScienceOn
26 Wang, Z. M., Liu, C. and Dziarski, R. 2000. Chemokines are the main proinflammatory mediators in human monocytes activated by Staphylococcus aureus, peptidoglycan, and endotoxin. J. Biol. Chem. 275, 20260-20267.   DOI   ScienceOn
27 Yoshimura, A., Lien, E., Ingalls, R. R., Tuomanen, E., Dziarski, R. and Golenbock, D. 1999. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163, 1-5.
28 Akira, S., Uematsu, S. and Takeuchi, O. 2006. Pathogen recognition and innate immunity. Cell 124, 783-801.   DOI   ScienceOn