• Title/Summary/Keyword: 기하학적비선형

Search Result 443, Processing Time 0.022 seconds

Geometrically Non-linear Model in Flexibility Method (유연도법에서의 기하학적 비선형 모델)

  • Kwon, Min-Ho;Kim, Jin-Sup
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.63-66
    • /
    • 2011
  • 유연도법 기반의 공식화에서는 변위영역의 형상함수를 라그랑지언(Lagrangian)보간법에 의한 곡률로부터 횡방향 변위를 유도한다. 곡률변위보간법으로 유도한 매트릭스를 사용한 기하학적 비선형 해석방법과 강성도법을 기반으로 한 비선형 기존의 유한요소 해석 프로그램의 결과를 비교하여 적용이 가능함을 확인하였고, Spacone의 이론을 확장시켜 기하학적 비선형 거동을 예측할 수 있는 유연도법의 알고리즘을 제안하였다. 예제를 통하여 실제 문제에 대한 기하학적 비선형 해석을 수행하였다.

  • PDF

Geometrically Non-Linear Analysis of Space Frames Considering Finite Rotations (유한회전을 고려한 공간뼈대의 기하학적 비선형해석)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.81-94
    • /
    • 1997
  • 본 연구에서는 유한 회전에 의한 효과를 고려한 곡선 보요소를 개발하고, 이 요소를 이용하여 공간뼈대 구조물의 기하학적 비선형 해석을 수행하였다. 이 곡선 보요소는 증분 변위장에 Rodriguez의 2차 유한 회전항을 포함시킴으로써, 유한 회전에 의한 기하학적 평형을 유지하도록 하였다. 대변형 해석을 위하여 Total Lagrangian 방법이 적용되었으며, 비선형 해석을 수행하기 위한 알고리즘으로는, 여러개의 임계점을 갖는 비선형 거동가지도 추적할 수 있도록 하중 및 변위 증분의 조합법이 사용되었다. 공간 뼈대 구조물의 해석 예제를 통하여, 기하학적 비선형 해석에서 발생하는 유한 회전에 의한 효과를 확인하고, 본 연구에서 제안한 유한요소의 효율성 및 비선형 알고리즘으로 선택한 하중 및 변위 증분의 조합법의 적용성을 입증하였다.

  • PDF

Nonlinear Dynamic Analysis of Deep Water Riser by the Utilization on the Kinematic Constraint Condition (운동학적 제약조건을 이용한 심해저 라이저의 비선형 동적해석)

  • 홍남식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.495-508
    • /
    • 1999
  • 변형된 라이저의 단위 접선벡터상의 운동학적 제약조건을 적용하여 심해저 라이저의 비선형 동적해석을 행한다. 이 조건의 적용으로 자유도수를 감소시킬 수 있으며 심한 비선형성으로 인한 해의 발산 가능성을 제거할 수 있다. 라이저의 거대변형으로 인한 기하학적 비선형성과 비선형 경계조건이 고려된다. 또한, 비선형성이 포함되는 수동학적 하중이 조류와 파랑에 의해 발생하여 내부에 정상류가 흐르는 라이저관의 외벽에 작용하게 된다. 이 외에도라이저 자체의 축방향 변형조건을 고려한다. Galerkin의 유한요소 근사화와 시간증분자를 적용하여 유한요소에 대한 평형 메트릭스 방정식을 유도하고, 수치해석을 위한 알고리즘을 제안하며 API 보고서의 결과와 비교함으로써 제안된 모델이 검증된다. 또한, 기하학적 비선형성으로 인한 영향을 조사하였다.

  • PDF

Inelastic Nonlinear Analysis of Plane Truss Structures Using Arc-Length Method (호장법을 이용한 평면 트러스 구조의 비탄성 비선형 해석)

  • Kim, Kwang-Joong;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane forte by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. the spatial structure should be analyzed by nonlinear analysis regardless static and dynamic analysis because it accompanys large deflection for member. To analyze the spatial structure geometrical and material nonlinearity should be considered in the analysis. In this paper, a geometrically nonlinear finite element model for plane truss structures is developed, and material nonlinearity is also included in the analysis. Arc-length method is used to solve the nonlinear finite element model. It is found that the present analysis predicts accurate nonlinear behavior of plane truss.

  • PDF

Geometric and Material Nonlinear Analysis of Single Layer Dome using ABAQUS (유한요소 해석을 이용한 단층 래티스 돔의 비선형비탄성 해석)

  • Kim, Yeon-Tae;Jeong, Mi-Roo;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.119-124
    • /
    • 2008
  • Space structure is a appropriate shape that resists external force only with in-plane force by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. The space structure should be analized by nonlinear analysis regardless static and dynamic analysis because it accompanies large deflection for member. To analyze the structure of the space structure exactly generally geometrically nonlinear and material nonlinear, complex nonlinear analysis are considered. To settle the weakness that geometric nonlinear problem does not consider nonlinear as per trait and position of the structure material and that the nonlinear matter of structure material also does not consider nonlinear as per geometric form. Therefore, In this paper, analysis is considered geometric nonlinear and material nonlinear simultaneous conditioning, and traced load-deflection curve by using ABAQUS which is the general purpose of the finite element program.

  • PDF

Nonlinear Effects on the Cable Dynamic Behaviour (케이블의 동적거동에 미치는 비선형 영향)

  • Hyun-Kyoung,Shin
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.11-16
    • /
    • 1990
  • The effects on the dynamic behaviour of the geometric nonlinearity and large dynamic tensile forces occurring in hostile sea environments must be investigated for assessing extreme tensions and fatigue life expectancy of cable. In this paper, the combined effects on the cable dynamic responses are shown through comparisons between numerical solutions to the cable dynamic equations with geometric nonlinearity and large tensile force terms as well as nonlinear drag term and those to the cable equations with only nonlinear drag term. It is found that, in steady state, the cambined effects increase the maximum dynamic tension and reduce the magnitude of the minimum of the dynamic tension at the middle of the cable. This decrease together with the increase of the maximum dynamic tension, cause the average tension to become higher and, therefore, it may deteriorate the cable fatigue life.

  • PDF

기하학적 계획법

  • Kang, Suk-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.1 no.1
    • /
    • pp.51-54
    • /
    • 1976
  • 1964년에 Duffin과 Zener는 기하적 계획법(Geometric Programming)이란 새로운 비선형 계획법(Nonlinaer Programming)을 개발하였다. 이 새로운 기하적 계획법은 수주한 형태의 비선형 계획문제에만 적용이 가능하지만 반면 적용이 가능한 문제에 관해서는 매우 강력한 계획법중에 하나가 된다. 지금부터 기하적 계획법의 원리와 그에 따르는 문제해결 예제를 들면서 적용 가능한 비선형 문제를 해결하겠다.

  • PDF

Nonlinear Analysis of 3-D Steel Frames (3차원 강뼈대구조의 비선형 해석)

  • Kim, Seung Eock;Kim, Yo Suk;Choi, Se Hyu;Kim, Sung Mo;Choi, Joon Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.417-424
    • /
    • 1999
  • In this paper a nonlinear analysis of three-dimensional steel frames is developed. This analysis accounts for material and geometric nonlinearities. The material nonlinearity includes gradual yielding associated with flexural behaviors. The geometric nonlinearity includes the second-order effects associated with $P-{\delta}\;and\;P-{\Delta}$ effects. The material nonlinearity at the node is considered using the concept of P-M hinge consisting of many fibers. The geometric nonlinearity is considered by the use of stability function. The nonlinearity caused by shear and torsional interaction effects is neglected. The modified incremental displacement method is used as the solution technique. The load-displacements predicted by the proposed analysis compare well with those given by other approaches.

  • PDF

Primitive Instancing for the Definition of Non-conventional Hull (비정규 선형정의를 위한 원형요소 인스턴싱의 이용)

  • Won-Don Kim;Jong-Ho Nam;Kwang-Wook Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 1993
  • Various geometric modeling techniques for a hull have been developed with wide application of computer to the ship design. Up to now, they are used for the representation of the sculptured surface with the piecewise polynominal curves or surfaces for a conventional hull. In this paper, a convenient and accurate modeling technique that is instancing and blending of the geometry primitives is introduced for a non-conventional hull such as SWATH, trimaran, caisson etc. Geometric characteristics, hydrostatic particulars and stability of the definded hull are calculated.

  • PDF

Geomatrically Non-linear Analysis Method by Curvature Based Flexibility Matrix (유연도 매트릭스를 사용한 기하학적 비선형 해석방법)

  • Kim, Jin Sup;Kwon, Min Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.125-135
    • /
    • 2011
  • The latest study for formulation of finite element method and computation techniques has progressed widely. The classical method in the formulation of frame elements for geometrically nonlinear analysis derives the geometric stiffness directly from the governing differential equation for bending with axial force. From the computational viewpoint of this paper, the most common approach is the finite element method. Commonly, the formulation of frame elements for geometrically nonlinear structures is based on appropriate interpolation functions for the transverse and axial displacements of the member. The formulation of flexibility-based elements, on the other hand, is based on interpolation functions for the internal forces. In this paper, a new method is used to suppose that interpolation functions for the displacements from the curvatures is Lagrangian interpolation. This paper derives flexibility matrix from that displacement functions and is considered the application of it. Using the flexibility matrix, this paper apply the program considered geometrically nonlinear analysis to common problems.