Browse > Article
http://dx.doi.org/10.11112/jksmi.2011.15.2.125

Geomatrically Non-linear Analysis Method by Curvature Based Flexibility Matrix  

Kim, Jin Sup (경상대학교 토목공학과)
Kwon, Min Ho (경상대학교 토목공학과 공학연구원)
Publication Information
Journal of the Korea institute for structural maintenance and inspection / v.15, no.2, 2011 , pp. 125-135 More about this Journal
Abstract
The latest study for formulation of finite element method and computation techniques has progressed widely. The classical method in the formulation of frame elements for geometrically nonlinear analysis derives the geometric stiffness directly from the governing differential equation for bending with axial force. From the computational viewpoint of this paper, the most common approach is the finite element method. Commonly, the formulation of frame elements for geometrically nonlinear structures is based on appropriate interpolation functions for the transverse and axial displacements of the member. The formulation of flexibility-based elements, on the other hand, is based on interpolation functions for the internal forces. In this paper, a new method is used to suppose that interpolation functions for the displacements from the curvatures is Lagrangian interpolation. This paper derives flexibility matrix from that displacement functions and is considered the application of it. Using the flexibility matrix, this paper apply the program considered geometrically nonlinear analysis to common problems.
Keywords
Geomatrically nonlinear; Flexibility matrix; Curvature;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Crisfield, M. A., "Non-linear finite element analysis of solids and structures", John Wiley and Sons, Chichester, u.k, 1991.
2 Neuenhofer, A. and Filippou, F. C., "Evaluation of nonlinear frame finite-element models", J. Struct. Engrg., ASCE, 123, pp.958-966, 1997.   DOI   ScienceOn
3 Neuenhofer, A. and Filippou, F. C., "Geometrically Nonlinear Flexibility-Based Frame Finate Element", J. Struct. Engrg., ASCE, 123, pp.704-711, 1998.
4 Spacone, E., Ciampi, V. and Filippou, F.C., "Mixed formulation of nonlinear beam finite element", Comp. and Struct., 58, pp.71-83, 1996.   DOI   ScienceOn
5 Tonti, E., "The reason for analogies between physical theories", Appl. Math. Model:37-50, 1997.
6 Zienkiwicz, O. C. and Taylor, R. T., "The finite element method: basic formulation and linear problem.", 4th Ed., Mcgraw-Hill Inc., London, England, Vol. 1, 1989.
7 권민호, 장준호, "철근콘크리트 기둥의 3차원 비선형 유한요소 해석", No.3., 콘크리트학회 논문집, Vol. 16, 2004.
8 박순응, 박문호, 권민호, "Timoshenco보 이론 및 층상화 단면모델을 이용한 RC기둥의 비선형 유한요소 해석", No.4A, 대한토목학회 논문집, Vol. 26, 2006.
9 장준호, 박문호, 이해경, 박순응, "재료 및 기하학적 비선형을 고려한 브레이싱된 강뼈대구조물의 최적설계", No. 3, 한국강구조학회 논문집, Vol. 12, 2000.
10 Backlund, J., "Large deflection analysis of elastoplastic beams and frames", int. J, Mech. Sci, 18, pp.269-277, 1974.
11 Bathe, K. J., "Finite element procedures", Prentice Hall, Englewood Cliffs, N. J, 1996.
12 Carol, I. and Murcia, J., "Nonlinear time-dependent analysis of planar frames using an 'exact' formulation- I: Theory", Comp. and Struct., 33, pp.79-87, 1989.   DOI   ScienceOn