• 제목/요약/키워드: 기하문제해결

검색결과 345건 처리시간 0.019초

수학교사들의 내용지식이 학생들의 기하 평가에 미치는 영향

  • 고상숙;장훈
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제19권2호
    • /
    • pp.445-452
    • /
    • 2005
  • 본 연구는 중 고등학교 교사 50명에 대하여 기하 문제의 논증기하적 또는 해석기하적 문제해결 전략이 학생들의 평가에 어떤 영향을 미치는가를 조사한 것이다. 중학교에서 고등학교로 진학하면 도형의 문제에 대한 해석기하적인 문제해결 능력은 교육과정 상 대단히 중요하게 가르쳐야 할 내용이다. 유클리드 기하에 바탕을 둔 논증기하의 지식은 좌표평면의 도형을 방정식으로 나타내고 연구하는 해석기하의 기본이다. 그럼에도 불구하고 많은 학생들은 논증기하적 문제해결을 선호하는 반면 해석기하적 문제해결은 어려워한다. 또한 논증기하적 문제 형태에는 논증기하적 문제해결 전략, 해석기하적 문제 형태에는 해석기하적 문제해결 전략을 구사하는 경향을 보인다. 본 연구는 중 고등학교 교사들의 기하 문제에 대한 내용 지식이 학생 평가에 미치는 영향에 초점이 맞추어져 있다.

  • PDF

중학생의 성취수준에 따른 기하 문제해결의 특징 탐색 (Research for Distinctive Features of Geometry Problem Solving According to Achievement Level on Middle School Students)

  • 김기연;김선희
    • 대한수학교육학회지:학교수학
    • /
    • 제8권2호
    • /
    • pp.215-237
    • /
    • 2006
  • 본 연구는 국가수준 학업성취도에 따라 구분된 학생들의 성취수준별로 기하 문제해결에서 어떤 특정을 보이는지를 탐색하려 하였다. 기초학력, 보통학력, 우수학력 학생 3 명씩을 동질그룹으로 구성하여 교사의 도움 없이 비정형적인 기하 문제를 해결하게 하였고, 관찰을 통해 성취수준별로 기하 개념 발달 수준이 어떠한지, 문제 해결의 방법을 선택할 때 어떤 접근을 하는지를 분석하였다. 기초학력 학생들은 모양과 실용 기하의 개념 수준에서 문제해결에서 무엇을 할 수 있는가에 초점을 둔 물리적, 구체적 행동을 보였고, 보통학력 학생들은 실용 기하와 유클리드 기하의 수준에서 문제해결을 위해 무엇을 해야 하는가에 초점을 두어 문제해결의 여러 가지 방법을 탐색했으며, 우수학력 학생들은 실용 기하와 유클리드 기하의 수준에서 일반화와 정당화를 통해 문제해결의 본질에 접근하려 하였다. 본 연구는 이에 따라 학생들의 수준별 수학 학습을 지도하는 것에 대한 시사점을 제안하였다.

  • PDF

대수식의 기하학적 해석을 통한 문제해결에 대한 연구 (A Study on Problem Solving Related with Geometric Interpretation of Algebraic Expressions)

  • 유익승;한인기
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제25권2호
    • /
    • pp.451-472
    • /
    • 2011
  • 수학의 다양한 영역들 사이의 연결성은 수학 자체의 발달 과정 뿐만 아니라, 학생들의 수학 학습에서도 중요한 역할을 한다. 본 연구에서는 수학 문제에 포함된 대수식의 기하학적 해석을 통해 새로운 문제해결 방법을 탐구하였다. 특히 수학 문제해결에서 기하학적 접근에 대해 고찰하였고, 고등학교 수준의 비정형적인 문제들을 기하학적 해석을 통해 해결하며, 이에 관련된 문제해결의 특정들을 분석하였다. 본 연구에서 제시하는 자료들은 고등학교의 교수-학습 과정에서 직접 활용될 수 있을 것이다.

시각화가 초등기하문제해결에 미치는 영향 (An Influence of Visualization on Geometric Problem Solving in the Elementary Mathematics)

  • 윤여주;강신포;김성준
    • 한국학교수학회논문집
    • /
    • 제13권4호
    • /
    • pp.655-678
    • /
    • 2010
  • 초등수학에서 기하교육은 공간에 대한 직관의 계발을 통해 도형에 대한 이해와 공간 감각을 이끌어내는데 초점을 맞추어야 한다. 이와 함께 시각화는 기하에서의 문제해결 을 결정짓는 중요한 요소 가운데 하나이다. 지금까지 시각화에 대한 분석은 주로 중등 기하교육에서 다루어진 반면, 초등수학에서 평면도형과 공간도형에서의 문제해결과 관련해서 학생들의 시각화에 대한 논의는 부족했다. 본 연구는 초등수학에서 시각화가 기하문제해결에 미치는 영향을 분석한 것으로, 기하문제해결에서 나타나는 시각화 방법과 시각화에 영향을 미치는 요소, 그리고 이 과정에서 나타나는 어려움을 살펴본 것이다. 먼저 평면도형과 입체도형의 문제해결에서 시각화 방법을 구분하여 살펴보고, 이러한 방법에 따라 도형에 대한 이해와 시각화 과정이 어떻게 진행되는지를 도식화하여 살펴본다. 또한 시각화에 영향을 미치는 요소를 구분하고, 시각화 과정의 어려움으로 인해 어떤 오류가 나타나는가를 살펴보고, 이를 통해 초등기하문제해결에서 시각화에 대한 논의를 이끌어낸다.

  • PDF

기하학적 계획법

  • 강석호
    • 한국경영과학회지
    • /
    • 제1권1호
    • /
    • pp.51-54
    • /
    • 1976
  • 1964년에 Duffin과 Zener는 기하적 계획법(Geometric Programming)이란 새로운 비선형 계획법(Nonlinaer Programming)을 개발하였다. 이 새로운 기하적 계획법은 수주한 형태의 비선형 계획문제에만 적용이 가능하지만 반면 적용이 가능한 문제에 관해서는 매우 강력한 계획법중에 하나가 된다. 지금부터 기하적 계획법의 원리와 그에 따르는 문제해결 예제를 들면서 적용 가능한 비선형 문제를 해결하겠다.

  • PDF

문제해결과 데카르트의 <기하학> (Problem-solving and Descartes' )

  • 한경혜
    • 한국수학사학회지
    • /
    • 제21권2호
    • /
    • pp.39-54
    • /
    • 2008
  • 이 논문에서는 문제해결의 입장에 서서 수학사에서 중요한 의미를 지닌 데카르트의 <기하학>을 고찰한다. 문제해결의 일반적 원리를 천명한 것만이 아니라 실제로 당면한 문제를 해결하기 위하여 새로운 방법을 찾아내는 것이야말로 데카르트가 문제해결에 관하여 후세에 영향을 크게 남긴 업적이라 할 수 있다. 따라서 본고에서는 그의 방법에 초점을 맞추어 분석하도록 한다.

  • PDF

동적 기하 환경의 문제 해결 과정에서 연속 스펙트럼 활용에 대한 소고 (A study on the use of continuous spectrum in problem solving in a dynamic geometry environment)

  • 허남구
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제60권4호
    • /
    • pp.543-554
    • /
    • 2021
  • 동적 기하 환경은 학생들의 기하 문제 해결에 긍정적인 역할을 한다. 학생들은 드래깅을 통해 변화 속에서 불변성을 추측할 수 있으며, 분석법은 기하 문제를 해결하는 데 도움을 준다. 하지만 드래깅 활동과 분석법을 활용한 문제 해결은 제한점이 있으며, 연속 스펙트럼은 대안이 될 수 있다. 학생들은 코딩이 결합된 동적 기하 환경에서 프로그래밍을 통해 연속 스펙트럼을 구현할 수 있다. 이에 본 연구에서는 동적 기하 환경의 문제 해결에서 연속 스펙트럼을 활용하는 방안을 제시하였다. 학생들은 문제 해결의 이해 단계에서 시각적으로 표현된 문제 상황을 통해 즉각적으로 이해하고, 계획 단계에서 해결 전략을 수립하고, 반성 단계에서 결과의 점검 및 일반화하는 데 도움을 줄 수 있다.

GSP를 활용한 기하수업에서 수준별 학생의 논증기하와 해석기하의 연결에 관한 연구 (A Study on the Effects of Using GSP of Level Differentiated Students in Connecting Demonstrative Geometry and Analytic Geometry)

  • 도정철;손홍찬
    • 한국학교수학회논문집
    • /
    • 제18권4호
    • /
    • pp.411-429
    • /
    • 2015
  • 본 연구에서는 기하 문제해결에서 GSP의 활용이 수준별로 학생들에게 어떤 영향을 끼치는지에 대해 알아보았고, 특히 논증기하와 해석기하의 연결성에 어떤 영향을 주었는지에 관하여 살펴보았다. 구체적으로 살펴보면 상 수준의 학생은 기하 문제를 해결하기 위해 바로 형식적인 대수적 식을 사용하는 것을 선호하였고, 중 하 수준의 학생의 경우에는 GSP의 도움을 받아 대수식을 찾고자 하는 노력을 보였다. 특히 하수준의 경우에는 문제해결에는 실패하였지만 GSP의 도움을 받아 문제를 이해할 수 있는 경우가 많았다. 논증기하와 해석기하의 연결성과 관련하여 GSP의 역동적인 환경은 형식화된 해석기하적 표현의 의미를 한 눈에 파악할 수 있도록 도움을 주었고, 해석기하적 접근 방식을 사용한 풀이를 전개한 후 문제해결의 반성 단계에서 그 결과의 의미를 시각화하여 전체적으로 이해할 수 있도록 도움을 줄 수 있음을 알 수 있었다.

고대 인도와 그리스의 기하학

  • 김종명
    • 한국수학교육학회:학술대회논문집
    • /
    • 한국수학교육학회 2010년도 제44회 전국수학교육연구대회
    • /
    • pp.221-221
    • /
    • 2010
  • 고대의 인도수학은 산스크리트어로 쓰여 있고, 최초의 기하학은 베다문헌으로 경전 속에 포함되어 있으며, 성스런 제단이나 사원을 설계하기위해서 발전하였다. 고대 인도의 많은 수학자들은 힌두교의 성직자들로 일찍이 십진법, 계산법, 방정식, 대수학, 기하학, 삼각법 등의 연구에 공헌하였다. 인도 기하학은 양적이며 계산적이지만 원리를 가지고 문제를 해결하는 특성이 있다. 그러나 고대 그리스 기하학은 공리적이고 연역적으로 전개되는 완전한 학문으로 발전하였다. 고대 인도와 타 문명권의 기하학을 비교하는 것은 오늘날 문제해결을 중시하는 현대과학의 시대에 가치와 의미가 있는 것으로 사료된다.

  • PDF

중등 기하문제 해결에서 시각화 과정 (Process of Visualization in 2D-Geometric Problem Solving among Secondary School Students)

  • 류현아;장경윤
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제19권1호
    • /
    • pp.143-161
    • /
    • 2009
  • 본 연구는 기하문제해결에서 시각화 과정을 분석하여 기하추론교육에 시사점을 얻기 위하여 이루어졌다. 이를 위하여 선행연구를 근거로 시각화 과정을 구분하였으며 Duval의 이론을 기초로 시각화 과정 분석틀을 개발하였다. 서울과 경기지역의 중학교 3학년생 2명과 고등학교 1학년생 6명이 이 연구에 참여하였다. 각 학생들에게 평행선, 평행사변형, 닮음비, 닮음도형, 중선, 무게중심, 수직이등분선, 각의이등분선 등 평면도형 과제를 제공하고 각 학생의 문제해결 과정을 질적인 방법으로 분석하였다. 분석 결과 평면도형 문제해결에서 시각화는 도형의 이해를 도와 문제해결에 중요한 통찰을 제공하는 것으로 나타났다. 시각화 과정에서 도형에 대한 담론적 이해와 조작적 이해는 구성 요소들 간의 성질과 성질들 간의 관계를 알게 하고, 도형의 구조를 파악할 수 있게 하는 발견적 역할을 하였다.

  • PDF