• 제목/요약/키워드: 기어치형

검색결과 94건 처리시간 0.028초

인벌류트 스퍼기어 치형 강도에 관한 연구 (A Study the Development of Involute Spur Gears Profiles Strength)

  • 조성철
    • 한국산업융합학회 논문집
    • /
    • 제9권4호
    • /
    • pp.269-276
    • /
    • 2006
  • Strength Design method for involute spur gears is developed. The developed gear strength design system can design the optimized gear that minimize the number of pinion teeth with face tooth. Method of optimization is matrix form which is developed from this study. Design variables are transmitted power, gear volume, gear ratio, allowable contact stress and allowable bending stress, etc. Gear design method developed this study can be apply to the gears of plants, machine tools, automobiles.

  • PDF

평기어의 스커핑 강도향상을 위한 치형수정 기술의 연구 (A Study of Spur Gear Tooth Profile Modiscation Scheme for ScufEng Resistance Improvement)

  • 김태완;황진영;조용주
    • Tribology and Lubricants
    • /
    • 제18권6호
    • /
    • pp.418-424
    • /
    • 2002
  • The basic concept of ‘gear profile modification’ is to change a part of the involute profile to reduce the load in that area and appropriate profile modifications can help gears to run quietly and resist scoring., pitting, and tooth breakage. In this study, the modification of tooth profile to make a smooth transmission of the normal loads in spur gears has been developed. The modified tooth profile has been determined by the total deflection at contact points. We also compared our results with other experimental results.

치형수정된 기어구동계의 비선형 동특성 해석 (Nonlinear Dynamic Characteristics of Gear Driving System with Tooth Modification)

  • Cho, Yun-Su;Park, Yeon-Sun
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.311.1-311
    • /
    • 2002
  • To reduce the vibration of a gear driving system, the modification of gear tooth from the orignal involute gear profile is usually done in gear manufacturers. The quantity of the tooth modification has been decided on the basis of the intereference between two gear teeth during gear meshing and the elastic deformation due to loading. (omitted)

  • PDF

타원 1-타원형 인벌루트-타원 2 로브 형상의 제로터 최적 설계 (Optimal Design of Gerotor with Combined Lobe Profiles (Ellipse 1-Elliptical Involute-Ellipse 2))

  • 곽효서;이승환;김철
    • 대한기계학회논문집A
    • /
    • 제39권12호
    • /
    • pp.1237-1244
    • /
    • 2015
  • 제로터(Gerotor) 오일펌프는 구조가 간단하고 1 회전당 토출량이 많기 때문에 소형화에 유리하며, 자동차의 엔진 윤활유 공급원 및 자동 변속기의 유압원으로 널리 사용되고 있다. 최근 자동차 산업에서는 연비향상 및 소음저감이 가장 중요한 문제로 대두되는데, 내접형 기어펌프 측면에서는 제로터의 치형설계 및 포트형상 설계를 통하여 이를 대처하고 있다. 이에 본 논문에서는 유량맥동이 매우 작은 값을 가지도록 조합된(타원 1-타원형 인벌루트-타원 2) 외부로브 형상에 대하여 치형의 기구학적 조건을 만족하는 식을 유도하여 내부로브 형상을 창출하였으며, 이에 대한 첨점 및 루프가 발생하지 않는 설계인자 범위를 결정하였다. 또한 설계인자의 변화가 치형의 형상 및 성능인자(유량, 유량맥동)에 미치는 영향을 파악하여 최적의 치형을 구하고자 하였다.

산업용 취출로봇의 소음 저감에 대한 연구 (Study on Noise Reduction of an Industrial Take-out Robot)

  • 조재연;김덕수;정진태
    • 한국소음진동공학회논문집
    • /
    • 제21권1호
    • /
    • pp.41-46
    • /
    • 2011
  • In this paper, we experimentally investigate factors that decrease in noise of a industrial take-out robot at driving state. For this, we analyse change in the noise of the take-out robot with gear machining accuracy and clearance. In order to calculate the noise related to gear machining accuracy that is based upon the Japanese Industrial Standard(JIS), we equally increase motor speed from 0 rpm to 1250 rpm. In addition, to investigate influence of clearance on noise, we evenly change clearance from 0.5 mm to 1.2 mm. These experiments show that clearance is more effective factor than gear machining accuracy to reduce the noise of the take-out robot.

기어 치형 설계 프로그램 개발에 관한 연구 (A Study on the Development of the Gear Profile Design Program)

  • 정성필;박태원
    • 한국정밀공학회지
    • /
    • 제26권8호
    • /
    • pp.104-111
    • /
    • 2009
  • In this paper, the gear design program is presented. The profile of gears is created using classical mathematic formulations. In each gear, a kinematic joint is applied and one can define the 20 contact condition between gear pairs. Initial and boundary conditions such as force, torque, velocity, acceleration, etc. can be set. Thus, it is possible to analyze dynamic characteristics of gear pairs such as reaction moment and the variation of angular velocity. In order to find the optimal profile of gear pairs, two optimization methods based on design of experiments are inserted in the program; One is the Taguchi method and the other is the response surface analysis method. To verify the program, the rack & pinion gear is created and analyzed. Simulation results show that the developed program is useful and result data is reliable.

링기어 절삭을 위한 클램프 척의 응력해석 (Stress Analysis of a Clamp Chuck for Machining of a Ring Gear)

  • 심한섭;김해지
    • 한국기계가공학회지
    • /
    • 제10권3호
    • /
    • pp.73-78
    • /
    • 2011
  • This study contains to theory and analysis research for the stress and the translation of an expand disk that fix a ring gear for tooth profile machining. The stress of the expand disk is analysed by the finite element method(FEM) to calculate design parameters. From the analysis results, the stress of the expand shows a linear tendency under various fixing force. This results show that the expand disk have a elastic characteristics as a disk spring. The maximum stress was observed on under side in split section of the expand disk. It is verified that the analysis results are useful to calculate design parameters of the expand disk.

트랙터 트랜스미션용 후진 아이들 기어의 3D 프린팅 특성 (3D Printing Characteristics of Reverse Idle Gears for Tractor Transmissions)

  • 김해지
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.1-8
    • /
    • 2017
  • This paper concerns the possibility of 3D printing reverse idle gears for tractor transmission. For the purposes of this experiment, idle gears were manufactured using a SLA 3D printer, FDM 3D printer, and through machining. The accuracy of the idle gears produced in these three different ways were evaluated by the properties of their outer diameter, inner diameter, roundness, concentricity, parallelism, span, backlash, and gear grade. The tooth characteristics of the idle gears were evaluated by their profile, lead, and the pitch of the gears. The results of this experiment determined that the surface conditions created by the finishing process had a significant impact on the dimensional accuracy of the gears and the characteristics of their teeth.