• Title/Summary/Keyword: 기공 탄성 계수

Search Result 28, Processing Time 0.028 seconds

Image-Based Computational Modeling of Porous Matrix Composites and Calculation of Poroelastic Coefficients (다공성 기지를 갖는 복합재의 이미지 기반 전산 모형화 및 기공 탄성 계수 산출)

  • Kim, Sung Jun;Shin, Eui Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.527-534
    • /
    • 2014
  • Poroelastic analyses of fiber-reinforced composites were performed using image-based computational models. The section image of a porous matrix was analyzed in order to investigate the porosity, number of pores, and distribution of pores. The resolution, location, and size of the section image were considered to quantify the effective elastic modulus, poroelastic parameter, and strain energy density using the image-based computational models. The poroelastic parameter was calculated from the effective elastic modulus and pore pressure-induced strain. In addition, the results of the poroelastic analyses were verified through representative volume elements by simplifying various pore configurations and arrangements.

Micromechanical Computational Analysis for the Prediction of Failure Strength of Porous Composites (다공성 복합재의 파손 강도 예측을 위한 미시역학 전산 해석)

  • Yang, Dae Gyu;Shin, Eui Sup
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.66-72
    • /
    • 2016
  • Porosity in polymer matrix composites increases rapidly during thermochemical decomposition at high temperatures. The generation of pores reduces elastic moduli and failure strengths of composite materials, and gas pressures in internal pores influence thermomechanical behaviors. In this paper, micromechanical finite element analysis is carried out by using two-dimensional representative volume elements for unidirectionally fiber-reinforced composites with porous matrix. According to the state of the pores, effective elastic moduli, poroelastic parameters and failure strengths of the overall composites are investigated in detail. In particular, it is confirmed that the failure strengths in the transvers and through-thickness directions are predicted much more weakly than the strength of nonpored matrix, and decrease consistently as the porosity of matrix increases.

Thermomechanical Behavior of Porous Carbon/Phenolic Composites in Pyrolysis Environments (고온 열분해 환경의 다공성 탄소/페놀릭 복합재의 열기계적 거동)

  • Kim, Sung-Jun;Han, Su-Yeon;Shin, Eui-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.711-718
    • /
    • 2011
  • The thermoelastic behavior of the porous carbon/phenolic composites is studied using the thermomechanical response model of chemically decomposing composites. The model includes thermal dependence of the porous composites, porosity in the pyrolysis process, pore pressure due to decomposing gases, and shrinkage. The poroelastic coefficients are calculated based on representative volume element model and finite element analysis. The internal stress distribution caused by pores and pore pressure, and the overall deformation are verified. The effects of the poroelastic coefficients on the thermoelastic behavior are examined through numerical experiments.

Calculation of Poroelastic Parameters of Porous Composites by Using Micromechanical Finite Element Models (미시역학적 유한요소 모델을 이용한 다공성 복합재료의 기공 탄성 인자 산출)

  • Kim, Sung-Jun;Han, Su-Yeon;Shin, Eui-Sup
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • In order to predict the thermoelastic behavior of porous composites, poroelastic parameters are measured by using micromechanics-based finite element models. The expanding deformation caused by pore pressure, and the degradation of homogenized elastic moduli with pores are calculated for the assessment of the poroelastic parameters. Various representative volume elements considering the shape, size, and array pattern of pores are modeled and analyzed by a finite element method. The effects of porosity and material anisotropy, and the distribution of stain energy density are investigated carefully. In addition, the measured poroelastic parameters are verified by predicting the thermo-pore-elastic behavior of carbon/phenolic composites.

Three-Dimensional Poroelastic and Failure Analysis of Composites Using Multislice Finite Element Models (분층형 유한요소 모델을 이용한 복합재료의 삼차원 기공 탄성 및 파손 해석)

  • Yang, Dae Gyu;Lim, Soyoung;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.92-98
    • /
    • 2017
  • Porosity in polymer matrix composites generated during pyrolysis process affect the thermomechanical behavior of the composites. In this paper, multislice finite element models for the porous composite materials are developed, and poroelastic and failure analysis for these models are performed. In order to investigate the three-dimensional effects, finite element meshes are modeled considering different porosity(up to 0.5) and the number of slices (up to five). As a result, effective Young's moduli and poroelastic parameters exhibit the maximum differences of 74.0% and 442.1% with respect to porosity respectively, and 98.7% and 37.2% with respect to the number of slices. First and last failure strengths are decreased 88.2% and 90.0% with respect to porosity respectively, and 53.8% and 171.8% with respect to the number of slices.

Mechanical Characteristics of Basalt in Jeju Island with Relation to Porosity (공극률에 따른 제주도 현무암의 역학적 특성)

  • Moon, Kyoungtae;Park, Sangyeol;Kim, Youngchan;Yang, Soonbo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1215-1225
    • /
    • 2014
  • Volcanic rocks formed from magma near the earth surface commonly show vesicular structures due to exsolution of gaseous phases in magma. The distinction and the amount of vesicles are greatly various, but there are few researches on the effect of volume percentage of vesicles on the mechanical properties. In this study, mechanical characteristics of volcanic rocks in relation to the porosity are investigated through experimental tests with Jeju basalt. Two methods (the buoyancy method and the caliper method) are adopted for measuring porosity. And unconfined compressive strength, elastic modulus, tensile strength, and elastic wave velocity are plotted against porosity in order to propose the empirical relations after the regression analysis. Also, unconfined compressive strength and the elastic modulus in relation to the elastic wave velocity are proposed with the analysis. In the case of vesicular rocks with more than 5% porosity, it is found that the buoyancy method provides more accurate estimation of porosity than the caliper method. The unconfined compressive strength, the elastic modulus, and the elastic wave velocity decrease curvilinearly with increasing in porosity. Also, the unconfined compressive strength and the elastic modulus increase linearly with increasing in elastic wave velocity.

A Numerical Approach to Effective Elastic Moduli of Solids with Microinclusions and Microvoids (미소 개재물과 기공을 갖는 고체의 유효탄성계수에 대한 수치적 접근)

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.852-859
    • /
    • 2009
  • For the analysis of solids containing a number of microinclusions or microvoids, in which the mechanical effect of each inclusion or void, a numerical approach is need to be developed to understand the mechanical behavior of damaged solids containing these defects. In this study, the simulation method using the natural element method is proposed for the analysis of effective elastic moduli. The mechanical effect of each inclusion or void is considered by controlling the material constants for Gaussian points. The relationship between area fraction of microinclusions or microvoids and effective elastic moduli is studied to verify the validity of the proposed method. The obtained results are in good agreement with the theoretical results such as differential method, self-consistent method, Mori-Tanaka method, as well as the numerical results by rigid body spring model.

Prediction of Thermoelastic Constants of Unidirectional Porous Composites Using an Unmixing-Mixing Scheme (분리-혼합 기법을 이용한 일방향 다공성 복합재료의 열탄성 계수 예측)

  • Shin, Eui-Sup
    • Composites Research
    • /
    • v.25 no.2
    • /
    • pp.34-39
    • /
    • 2012
  • A thermo-poro-elastic constitutive model of unidirectionally fiber-reinforced composite materials is suggested by extending the unmixing-mixing scheme which is based upon composite micromechanics. The strain components of thermal expansion due to a temperature change, gas pressure in pores, and chemical shrinkage are included in the constitutive model. On purpose to verify the derived constitutive relations, the representative volume element of two-dimensional lamina subject to various loading conditions is analyzed by the finite element method. The overall stress and strain responses are obtained, and compared with the predicted values by the unmixing-mixing scheme. The numerical results show the usefulness of the proposed model to predict the thermoelastic behavior of porous composites.

Novel Porous Materials Prepared by Repeated Directional Crystallization of Solvent (용매의 반복 방향성 결정화를 통해 제작된 새로운 다공성재료)

  • Kim, Hyun Jin;Lee, Jonghwi
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.151-156
    • /
    • 2015
  • Herein, novel porous structures were fabricated from monomer solutions of dimethylsiloxane and benzene by directional crystallization in twice. First, a honeycomb-like structure was fabricated by $1^{st}$ directional crystallization of solvent. By infiltration of the solution and subsequent $2^{nd}$ directional crystallization, novel structures of different pores in the honeycomb-like structure were fabricated. The porous materials prepared by the repeated directional crystallization have higher indentation modulus and hardness than those of the samples prepared by single directional crystallization. When a higher solution concentration was used in $2^{nd}$ directional crystallization, the maximum increase (indentation modulus: 2140% increase, indentation hardness: 2330% increase) was obtained. On the other hand, porosity and contact angle were lower in the samples from $2^{nd}$ directional crystallization than those from $1^{st}$ directional crystallization. A large decreases was observed, when a relatively high concentration was used in $2^{nd}$ directional crystallization (porosity: 21% decrease, contact angle: 36% decrease).

Characterization of Elastic Modulus of Kelvin Foam Using Elastic Structural Model and Ultrasound (초음파와 탄성 구조 모델을 이용한 캘빈 폼 재료의 탄성계수 평가)

  • Kim, Woochan Ethan;Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.474-482
    • /
    • 2016
  • A Kelvin foam plate - widely used in the energy and transport industries as a lightweight structural material - was examined to estimate its Young's modulus using ultrasound. An isotropic tetrakaidecahedron foam structure was designed in SolidWorks and printed using 3D printer with an ABS plastic material. The 3D printed foam structure was used to build a foam plate with a 14 mm thickness ($50mm{\times}100mm$ in size) for the ultrasonic test. The Kelvin foam plate, a significantly porous medium, was completely filled with paraffin wax to enable the ultrasound to penetrate through the porous medium. The acoustic wave velocity of the wax-filled Kelvin foam was measured using the time of flight (TOF) method. Furthermore, the elastic modulus of the Kelvin foam was estimated based on an elastic structural model developed in this study. The Young's modulus of the produced Kelvin foam was observed to be approximately 3.4% of the bulk value of the constituent material (ABS plastic). This finding is consistent with experimental and theoretical results reported by previous studies.