Browse > Article
http://dx.doi.org/10.7234/composres.2016.29.2.066

Micromechanical Computational Analysis for the Prediction of Failure Strength of Porous Composites  

Yang, Dae Gyu (Department of Aerospace Engineering, Chonbuk National University)
Shin, Eui Sup (Department of Aerospace Engineering, Chonbuk National University)
Publication Information
Composites Research / v.29, no.2, 2016 , pp. 66-72 More about this Journal
Abstract
Porosity in polymer matrix composites increases rapidly during thermochemical decomposition at high temperatures. The generation of pores reduces elastic moduli and failure strengths of composite materials, and gas pressures in internal pores influence thermomechanical behaviors. In this paper, micromechanical finite element analysis is carried out by using two-dimensional representative volume elements for unidirectionally fiber-reinforced composites with porous matrix. According to the state of the pores, effective elastic moduli, poroelastic parameters and failure strengths of the overall composites are investigated in detail. In particular, it is confirmed that the failure strengths in the transvers and through-thickness directions are predicted much more weakly than the strength of nonpored matrix, and decrease consistently as the porosity of matrix increases.
Keywords
Porous composites; Failure strength; Effective elastic moduli; Poroelastic parameter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Looyeh, M.R.E., Samata, A., Jihan, S., and McConnachie, J., "Modelling of Reinforced Polymer Composites Subject to Thermo-mechanical Loading," International Journal for Numerical Methods in Engineering, Vol. 63, No. 6, 2005, pp. 898-925.   DOI
2 Mcmanus, H.L.N. and Springer, G.S., "High Temperature Thermomechanical Behavior of Carbon-Phenolic and Carbon-Carbon Composites - I. Analysis," Journal of Composite Material, Vol. 26, No. 2, 1992, pp. 206-229.   DOI
3 Mcmanus, H.L.N. and Springer, G.S., "High Temperature Thermomechanical Behavior of Carbon-Phenolic and Carbon-Carbon Composites - II. Results," Journal of Composite Materials, Vol. 26, No. 2, 1992, pp. 230-255.   DOI
4 Yang, B.C., A Theoretical Study of Thermo-mechanical Erosion of High-Temperature Ablatives, Ph.D. Dissertation, Pennsylvania State University, 1992.
5 Biot, M.A. and Willis, D.G., "The Elastic Coefficients of the Theory of Consolidation," Journal of Applied Mechanics, Vol. 24, 1957, pp. 594-601.
6 Carroll, M.M., "An Effective Stress Law for Anisotropic Elastic Deformation," Journal of Geophysical Research, Vol. 84, No. B13, 1979, pp. 7510-7512.   DOI
7 Sullivan, R.M. and Salamon, N.J., "A Finite Method for the Thermochemical Decomposition of Polymeric Materials - I. Theory," International Journal of Engineering and Science, Vol. 30, No. 4, 1992, pp. 431-441.   DOI
8 Wu, Y. and Katsube, N., "A Thermomechanical Model for Chemically Decomposing Composites - I. Theory," International Journal of Engineering Science, Vol. 35, No. 2, 1997, pp. 113-128.   DOI
9 Matsuura, Y. and Hirai, K., "A Challenge of Predicting Thermo-Mechanical Behavior of Ablating SiFRP with Finite Element Analysis," AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 49th, AIAA 2010-6975.