DOI QR코드

DOI QR Code

초음파와 탄성 구조 모델을 이용한 캘빈 폼 재료의 탄성계수 평가

Characterization of Elastic Modulus of Kelvin Foam Using Elastic Structural Model and Ultrasound

  • Kim, Woochan Ethan (School of Engineering, Massachusetts Institute of Technology) ;
  • Kim, Nohyu (School of Mechatronics Engineering, Korean University of Technology and Education)
  • 투고 : 2016.10.26
  • 심사 : 2016.12.06
  • 발행 : 2016.12.30

초록

가벼운 다공성 구조재로서 널리 사용되는 캘빈 폼(foam) 재료의 탄성특성을 초음파를 이용하여 조사하였다. 캘빈 폼의 구조는 tetrakaidecahedron의 단위 셀(unit cell)이 규칙적으로 3차원 배열된 구조를 갖고 있는데 본 연구에서는 SoildWorks 프로그램에서 캘빈 단위 셀을 설계하고 ABS 플라스틱 재료를 이용하여 3차원 프린터로 제작한 후 초음파시험을 수행하였다. 캘빈 구조체는 기공이 많은 재료이기 때문에 초음파가 투과할 수 없어서 빈 공간을 모두 파라핀 왁스로 충진하여 초음파가 투과할 수 있도록 하였다. 파라핀을 충진한 캘빈 구조체는 초음파의 비행시간(TOF)을 이용하여 초음파 속도를 계산한 후, 이 복합 구조체에 대한 탄성 구조 모델을 기반으로 캘빈 구조체만의 탄성계수를 계산하였다. 측정된 캘빈 구조체의 탄성계수 값은 모재(ABS 플라스틱) 탄성계수의 약 3.4%가 되는 것으로 나타났는데 이 평가 결과는 선행된 연구 결과들에서 나타난 실험값이나 이론 해석 결과와 잘 일치하는 것을 확인할 수 있었다.

A Kelvin foam plate - widely used in the energy and transport industries as a lightweight structural material - was examined to estimate its Young's modulus using ultrasound. An isotropic tetrakaidecahedron foam structure was designed in SolidWorks and printed using 3D printer with an ABS plastic material. The 3D printed foam structure was used to build a foam plate with a 14 mm thickness ($50mm{\times}100mm$ in size) for the ultrasonic test. The Kelvin foam plate, a significantly porous medium, was completely filled with paraffin wax to enable the ultrasound to penetrate through the porous medium. The acoustic wave velocity of the wax-filled Kelvin foam was measured using the time of flight (TOF) method. Furthermore, the elastic modulus of the Kelvin foam was estimated based on an elastic structural model developed in this study. The Young's modulus of the produced Kelvin foam was observed to be approximately 3.4% of the bulk value of the constituent material (ABS plastic). This finding is consistent with experimental and theoretical results reported by previous studies.

키워드

참고문헌

  1. Y. H. Ko, D. J. Lim and H. S. Yoon, "The impact analysis of porous foam materials," Proceedings of Korean Society of Precision Engineering, Korean Society of Precision Engineering, Vol. 3, pp. 678-681 (2003)
  2. P. Kumar, "Investigation of Kelvin-like solid foams for potential engineering applications: An attractive set of geometrical and thermohydraulic properties," Ph. D thesis, Department of Mechanical Engineering, Aix-Marseille University, France (2014)
  3. R. A. Ayers, S. J. Simske, T. A. Bateman, A. Petkus, R. L. C. Sachdeva and V. E. Gyunter, "Effect of nitinol implant porosity on cranial bone ingrowth and apposition after 6 weeks," Journal of Biomedical Materials Research, Vol. 45, No. 1, pp. 42-47 (1999) https://doi.org/10.1002/(SICI)1097-4636(199904)45:1<42::AID-JBM6>3.0.CO;2-Q
  4. G. Ryan, A. Pandit and D. P. Apatsidis, "Fabrication methods of porous metals for use in orthopaedic applications," Biomaterials, Vol. 27, No. 13, pp. 2651-2670 (2006) https://doi.org/10.1016/j.biomaterials.2005.12.002
  5. R. G. Craig, J. D. Eick, and F. A. Peyton, "Strength properties of waxes at various temperatures and their practical application," J. Dent. Res., Vol. 46, No. 1, pp. 300-305 (1967) https://doi.org/10.1177/00220345670460013101
  6. C. C. Chamis, "Mechanics of composite materials: past, present and future," Journal of Composites Technology and Research, Vol. 11, No. 1, pp. 3-14 (1989) https://doi.org/10.1520/CTR10143J
  7. T. Kohout, R. Karlqvist, I. J. Lassila, J. J. Eskelinen, A. Hortling, L. Pesonen and E. Haeggstrom, "Ultrasonic determination of porosity in homogeneous ceramic samples," Geophysica , Vol. 49(1-2), pp. 25-32 (2013)
  8. E. Andrews, W. Sanders and L. J. Gibson, "Compressive and tensile behaviour of aluminum foams," Material Science Eng. A, Vol. 270, pp. 113-124 (1999) https://doi.org/10.1016/S0921-5093(99)00170-7
  9. M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson and H. N. G. Wadley, "Metal Foams: A Design Guide," Elsevier (2000)
  10. I. Jeon and T. Asahina, "The effect of structural defects on the compressive behavior of closed-cell Al foam," Acta Mater., Vol. 53, pp. 3415-3423 (2005) https://doi.org/10.1016/j.actamat.2005.04.010