DOI QR코드

DOI QR Code

Three-Dimensional Poroelastic and Failure Analysis of Composites Using Multislice Finite Element Models

분층형 유한요소 모델을 이용한 복합재료의 삼차원 기공 탄성 및 파손 해석

  • Yang, Dae Gyu (Department of Aerospace Engineering, Chonbuk National University) ;
  • Lim, Soyoung (Department of Aerospace Engineering, Chonbuk National University) ;
  • Shin, Eui Sup (Department of Aerospace Engineering, Chonbuk National University)
  • Received : 2016.08.20
  • Accepted : 2017.01.23
  • Published : 2017.02.01

Abstract

Porosity in polymer matrix composites generated during pyrolysis process affect the thermomechanical behavior of the composites. In this paper, multislice finite element models for the porous composite materials are developed, and poroelastic and failure analysis for these models are performed. In order to investigate the three-dimensional effects, finite element meshes are modeled considering different porosity(up to 0.5) and the number of slices (up to five). As a result, effective Young's moduli and poroelastic parameters exhibit the maximum differences of 74.0% and 442.1% with respect to porosity respectively, and 98.7% and 37.2% with respect to the number of slices. First and last failure strengths are decreased 88.2% and 90.0% with respect to porosity respectively, and 53.8% and 171.8% with respect to the number of slices.

열분해 현상을 겪는 고분자 복합재료의 내부에서는 기공이 형성되며, 이는 열기계적 거동에 영향을 미칠 수 있다. 본 논문에서는 기공이 형성된 복합재료의 분층형 삼차원 유한요소 모델을 개발하고 이를 이용하여 기공 탄성 및 파손 해석을 수행하였다. 유한요소 모델의 삼차원 확장 효과와 기공이 복합재료 내부에 미치는 영향을 확인하기 위하여 분층수와 기공도에 따른 분층형 유한요소 모델을 사용하였다. 해석 결과로서 유효 탄성 계수 및 기공 탄성 계수는 기공도가 0.5까지 증가함에 따라 최대 74.0%, 442.1%, 분층 수가 5까지 증가함에 따라 최대 98.7%, 37.2% 차이를 보였다. 또한, 초기 및 최종 파손 강도는 기공도에 따라 최대 88.2%, 90.0%, 분층에 따라 최대 87.5%, 171.8%까지 감소함을 확인하였다.

Keywords

References

  1. Pulci, G., Tirillo, J., Marra, F., Fossati, F., Bartuli, C. and Valente, T., "Carbon-Phenolic Ablative Materials for Re-Entry Space Vehicles: Manufacturing and Properties," Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 10, 2010, pp. 1483-1490. https://doi.org/10.1016/j.compositesa.2010.06.010
  2. Odabas, O. R. and Sarigul-Klijn, N., "Thermomechanical Coupling Effects at High Flight Speeds," AIAA Journal, Vol. 32, No. 2, 1994, pp. 425-430. https://doi.org/10.2514/3.12001
  3. Tzeng, S. S. and Chr, Y. G., "Evolution of Microstructure and Properties of Phenolic Resin-Based Carbon/Carbon Composites during Pyrolysis," Materials Chemistry and Physics, Vol. 73, 2002, pp. 162-169. https://doi.org/10.1016/S0254-0584(01)00358-3
  4. Trick, K. A. and Saliba, T. E., "Mechanisms of the Pyrolysis of Phenolic Resin in a Carbon/Phenolic Composite," Carbon, Vol. 33, No. 11, 1995, pp. 1509-1515. https://doi.org/10.1016/0008-6223(95)00092-R
  5. Wu, Y. and Katsube, N., "A Constitutive Model for Thermomechanical Response of Decomposing Composites under High Heating Rates," Mechanics of Materials, Vol. 22, No. 3, 1996, pp. 189-201. https://doi.org/10.1016/0167-6636(95)00041-0
  6. Kim, S. J., Han, S. Y., and Shin, E. S., "Thermomechanical Behavior of Porous Carbon/Phenolic Composites in Pyrolysis Environments," Journal of The Korean Society for Aeronautical & Space Sciences, Vol. 39, No. 8, 2011, pp. 711-718. https://doi.org/10.5139/JKSAS.2011.39.8.711
  7. Xu, Z., Fan, X., Zhang, W. and Wang, T. J., "Numerical Analysis of Anisotropic Elasto-Plastic Deformation of Porous Materials with Arbitrarily Shaped Pores," International Journal of Mechanical Sciences, Vol. 96-97, 2015, pp. 121-131. https://doi.org/10.1016/j.ijmecsci.2015.03.018
  8. Lee, S., Salamon, N. J. and Sullivan, R. M., "Finite Element Analysis of Poroelastic Composites Undergoing Thermal and Gas Diffusion," Journal of Thermophysics and Heat Transfer, Vol. 10, No. 4, 1996, pp. 672-680. https://doi.org/10.2514/3.844
  9. Kim, S. J., Han, S. Y. and Shin, E. S., "Calculation of Poroelastic Parameters of Porous Composites by Using Micromechanical Finite Element Models," Composites Research, Vol 25, No. 1, 2012, pp. 1-8. https://doi.org/10.7234/kscm.2012.25.1.001
  10. Vajari, D. A., Gonzalez, C., Llorca, J. and Legarth, B. N., "A Numerical Study of the Influence of Microvoids in the Transverse Mechanical Response of Unidirectional Composites," Composites Science and Technology, Vol. 97, 2014, pp. 46-54. https://doi.org/10.1016/j.compscitech.2014.04.004
  11. Feng, Y., Feng, Z., Li, A., Zhang, W., Luan, X., Liu, Y., Cheng, L. and Zhang, L., "Micro-CT Characterization on Porosity Structure of 3D Cf/SiCm Composite," Composite Part A: Applied Science and Manufacturing, Vol. 42, No. 11, 2011, pp. 1645-1650. https://doi.org/10.1016/j.compositesa.2011.07.015