• Title/Summary/Keyword: 기공전도

Search Result 170, Processing Time 0.023 seconds

The responses of Growth and Physiological traits of Acer triflorum on Calcium Chloride ($CaCl_2$) Concentration (염화칼슘 농도에 따른 복자기의 생장 및 생리적 반응 특성)

  • Kwon, Min-Young;Kim, Sun-Hee;Sung, Joo-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.500-509
    • /
    • 2014
  • To prevent freezing of the road by fallen snow, Calcium chloride($CaCl_2$) as a deicer is used to very often and it can be harmful to roadside trees. This study was conducted to investigate the effects of Calcium chloride($CaCl_2$) as a deicer on growth and physiological traits of Acer triflorum according to different concentration of $CaCl_2$. We measured growth, chlorophyll contents, gas exchangement characteristics, chlorophyll fluorescence and mineral nutrition concentration in plant and soil. The experimental group was composed of four treatments including 0mM(control), 9mM(0.5 %), 18mM(1.0 %), 54mM(3.0 %). Before germinating new shoot, the dissolution of $CaCl_2$ was irrigated twice interval of a week. At 30 days after treatment, all treatments decreased total cholorophyll content, photosynthetic rate, transpiration rate, stomatal conductance and photochemical efficiency($F_v/F_m$) with increasing concentration of $CaCl_2$ and especially, they significantly reduced in 3.0 % treatment. In contrast, chlorophyll a/b ratio increased with an increase of $CaCl_2$ concentration and water use efficiency increased in 1.0 % and 3.0 % treatments. At 50 days after treatment, all treatments were decreased in chl a, chl b, total chlorophyll content, carotenoid content, photosynthetic capacity, photochemical efficiency($F_v/F_m$) and quantum yield of photosystem II(${\Phi}_{PSII}$) compared with control and 3.0 % treatments were withered. $Ca^{2+}$ and $Cl^-$ were accumulated in leaves and soil, which inhibited water absorption and electron transport and it caused the reduction of height growth rate more than 50 %. Although there was a little difference according to time and $CaCl_2$ concentration, all treatments decreased in growth rate and physiological activity slowed down. As time passed, these results got worse. Therefore we need to take a measure earlier in order to minimize damage of trees.

Differences on Growth, Photosynthesis and Pigment Contents of Open-pollinated Pinus densiflora Families Under Elevated Temperature and Drought (온도 증가와 건조 스트레스에 따른 소나무 풍매차대묘의 가계간 생장, 광합성 및 광색소 함량 차이)

  • Kim, Gil Nam;Han, Sim-Hee;Park, Gwan Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • The impacts of high temperature and drought were studied on the seedlings of three families (superiorgangwon74, intermediate-gangwon77 and inferior-gangwon132) of P. densiflora which had been selected by the based on the growth indexes of 32-year-old. The seedlings were grown in controlled-environment growth chambers with combinations of four temperatures ($-3^{\circ}C$, $0^{\circ}C$, $+3^{\circ}C$ $+6^{\circ}C$; based on the monthly average for 30 years in Korea) and two water conditions (control, drought). The growth performance, photosynthetic parameters and photosynthetic pigment contents were measured at every 30 days under four temperatures and drought condition, and the end of each treatment. The superior family showed higher relative diameter at root collar growth rate and the dry weight than intermediate and inferior family in all treatments. Under elevated temperature and drought condition, growth rate was decreased, and seedlings showed lower growth rate than that of control in three families under low temperature. Photosynthetic rate, stomatal conductance and transpiration rate of three families decreased with the increase of temperature and drought condition, and that of seedlings under low temperature was lower than control. But under elevated temperature and drought condition, water use efficiency increased in three families. Photosynthetic pigment contents of leaves decreased under the increase of temperature and drought condition, but chlorophyll a/b ratio increased with the increase of temperature and drought condition in three families. The superior family showed higher total chlorophyll content than intermediate and inferior family in all treatments. In conclusion, P. densiflora is under changed temperature and drought condition, growth was decreased, seedlings more affected in elevated temperature than that of decreased temperature. The increase in monthly average temperature in Korea of more than $6^{\circ}C$, P. densiflora seedling growth in depending on region may decrease. In this study, the superior family(gangwon74) showed more excellent growth and physiological responses than intermediate (gangwon77) and inferior(gangwon132) family under changes temperature and drought.

Seasonal Variations of Evapotranspiration Observed in a Mixed forest in the Seolmacheon Catchment (설마천 유역의 혼효림에서 관측된 증발산의 계절변화)

  • Kwon, Hyo-Jung;Lee, Jung-Hoon;Lee, Yeon-Kil;Lee, Jin-Won;Jung, Sung-Won;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2009
  • The importance of securing water resources and their efficient management has attracted more attention recently due to water deficit. In water budget analysis, however, evapotranspiration(${\lambda}E$) has been approximated as the residual in the water balance equation or estimated from empirical equations and assumptions. To minimize the uncertainties in these estimates, it is necessary to directly measure ${\lambda}E$. In this study, using the eddy covariance technique, we have measured ${\lambda}E$ in a mixed forest in the Seolmacheon catchment in Korea from September 2007 to December 2008. During the growing season(May-July), ${\lambda}E$ in this mixed forest averaged about $2.2\;mm\;d^{-1}$, whereas it was on average $0.5\;mm\;d^{-1}$ during the non-growing season in winter. The annual total ${\lambda}E$ in 2008 was $581\;mm\;y^{-1}$, which is about 1/3 of the annual precipitation of 1997 mm. Despite the differences in the amount and frequency of precipitation, the accumulated ${\lambda}E$ during the overlapping period(i.e., September to December) for 2007 and 2008 was both ${\sim}110$ mm, showing virtually no difference. The omega factor, which is a measure of decoupling between forest and the atmosphere, was on average 0.5, indicating that the contributions of equilibrium ${\lambda}E$ and imposed ${\lambda}E$ to the total ${\lambda}E$ were about the same. The results suggest that ${\lambda}E$ in this mixed forest was controlled by various factors such as net radiation, vapor pressure deficit, and canopy conductance. In this study, based on the direct measurements of ${\lambda}E$, we have quantified the relative contribution of ${\lambda}E$ in the water balance of a mixed forest in the Seolmacheon catchment. In combination with runoff data, the information on ${\lambda}E$ would greatly enhance the reliability of water budget analysis in this catchment.

Development and Characterization of EMS-induced Mutants with Enhanced Salt Tolerance in Silage Maize (EMS 유도 내염성 증진 사료용 옥수수 돌연변이체 선발 및 특성 분석)

  • Cho, Chuloh;Kim, Kyung Hwa;Seo, Mi-Suk;Choi, Man-Soo;Chun, Jaebuhm;Jin, Mina;Kim, Dool-Yi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.406-415
    • /
    • 2020
  • Maize (Zea mays L.) is one of the most valuable agricultural crops and is grown under a wide spectrum of environmental conditions. However, maize is moderately sensitive to salt stress, and soil salinity is a serious threat to its production worldwide. In this study, we used ethyl methane sulfonate (EMS) to generate salt-tolerant silage maize mutants. We screened salt-tolerant lines from 203 M3 mutant populations by evaluating the morphological phenotype after salt stress treatment and selected the 140ES91 line. The 140ES91 mutant showed improved plant growth as well as higher proline content and leaf photosynthetic capacity compared with those of wild-type plants under salt stress conditions. Using whole-genome re-sequencing analysis, 1,103 single nucleotide polymorphisms and 71 insertions or deletions were identified as common variants between KS140 and 140ES91 in comparison with the reference genome B73. Furthermore, the expression patterns of three genes, which are involved in salt stress responses, were increased in the 140ES91 mutant under salt stress. Taken together, the mutant line identified in our study could be used as an improved breeding material for transferring salt tolerance traits in maize varieties.

Cold Tolerance of Native and Introduced Evergreen Rhododendron Species According to Morphological and Physiological Changes (국내 자생종 및 도입종 만병초의 내한성과 관련된 형태 및 생리적변화)

  • Lee, Byung-Chul;Kim, Seong-Min;Cheng, Hyo-Cheng;Shim, Ie-Sung
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.561-567
    • /
    • 2011
  • Cold tolerance of the native Rhododendron species which are on the verge of extinction in Korean nature were compared with the introduced species and its mechanism were studied physiologically with the investigation of the leaf angle, leaf curling, and photosynthetic activity. The degree of cold tolerance measured with the leaf burning after winter season was higher in the native species, Rhododendron brachycarpum and Rhododendron brachycarpum var. roseum than all the introduced species. 'Nova Zembla', an introduced species, showed high sensitivity to the low temperature. Changes in leaf angle by the low temperature were bigger in 2 native species and 'Parker's Pink' than the other introduced species and small comparatively in 'Nova Zembla' and 'Cunningham's White' cultivar. Leaf curling also occurred strongly in 2 native species by the low temperature. While, it was comparatively little and mild in the other introduced species. Therefore these results suggested that the leaf movement such as leaf angle change and curling adapted to the low temperature is positively related to the cold tolerance of 2 native species. By the way, such relationship is not explainable in the cold-sensitive 'Parker's Pink' cultivar showing comparatively stronger leaf movement. Photosynthetic activity measured before the winter season was high in the cold-tolerant R. brachycarpum and its recovery after winter season was faster in the 2 native species and the introduced 'Cynosure' cultivar than the other introduced species. They were the lowest in the most cold-sensitive 'Nova Zembla'. This phenomena occurred similarly even in the stomatal conductivity, suggesting that the movement of water from the roots to the leaves is better and then the leaf burning after winter season become small in the cold-tolerant species. The recovery of photosynthetic activity and stomatal conductivity was comparatively slower in the cold-sensitive 'Parker's Pink'. From the above results, leaf behavior adapted to the low temperature during the winter season and water movement to the leaves are related collectively to the cold tolerance represented as the leaf burning in the Rhododendron species is suggested.

Effect of Salt Concentration in Soil on the Growth, Yield, Photosynthetic Rate, and Mineral Uptake of Tomato in Protected Cultivation (토양 염류농도가 시설토마토의 생육, 수량, 광합성속도 및 무기양분 흡수에 미치는 영향)

  • Rhee, Han-Cheol;Cho, Myeung-Whan;Lee, Si-Young;Choi, Gyeong-Lee;Lee, Jae-Han
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.328-332
    • /
    • 2007
  • This study was conducted to investigate the effects of high concentrations of salts in soil on the growth, yield, quality, photosynthetic rate, and mineral uptake of tomato ('House Momotaro') in pot cultivation. The growth of tomato such as plant height, top plant weight and root weight decreased as the concentrations of salts in soils increased. Yield decreased by 31% and 41% in EC 5.0 and $7.5dS{\cdot}m^{-1}$, respectively compared with the salt concentration of EC $1.5dS{\cdot}m^{-1}$. Yield reduction was caused by low mean weight and number of fruit if at high salt concentration in soil, and affected by low photosynthetic rate and water potential in leaf, The rate of blossom-end rot was highest (16.7%) in EC $7.5dS{\cdot}m^{-1}$ and increased as the concentrations of salts in soils increased. The contents of soluble solids and titratable acids showed a tendency to increase with increasing the concentrations of salts in soils. Photosynthetic rate, water potential and stomatal conductance in leaf decreased as the salt concentration in soil increased. The higher the salt concentration in soil, the lower the mineral uptake such as T-N, P, K, Ca and Mg but, the higher the content of Na.

Amended Soil with Biopolymer Positively Affects the Growth of Camelina sativa L. Under Drought Stress (가뭄 조건 하에서 바이오폴리머 혼합 토양이 Camelina sativa L.의 생장에 미치는 긍정적 영향)

  • Lim, Hyun-Gyu;Kim, Hyun-Sung;Lee, Hyeon-Sook;Sin, Jung-Ho;Kim, Eun-Suk;Woo, Hyo-Seop;Ahn, Sung-Ju
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.163-173
    • /
    • 2018
  • The biopolymer (BP) used in this study is mainly composed of xanthan gum and ${\beta}$-glucan derived from microorganism and has been introduced as a novel material for soil stabilization. However, the broad applicability of BP has been suggested in the field of geotechnical engineering while little information is available about the effects of BP on the vegetation. The goal of this study is to find the BP effects on the growth of Camelina sativa L. (Camelina) under drought condition. For more thorough evaluation of BP effects on the plant growth, we examined not only morphological but also physiological traits and gene expression patterns. After 25 days of drought treatment from germination in the soil amended with 0, 0.25, 0.5, and 1% BP, we observed that the BP concentration was strongly correlated the growth of Camelina. When plants were grown under drought stress, Camelina in 0.5% BP mixture showed better physiological parameters of the leaf stomatal conductance, electrolyte leakage and relative water content compared to those in control soil without BP. Plant recovery rate after re-watering was higher and the development of lateral root was lower in BP amended soil. RNA expression of Camelina leaf treated with/without drought for 7 and 10 days showed that aquaporin genes transporting solutes at bio-membrane, CsPIP1;4, 2;1, 2;6 and TIP1;2, 2;1, were induced more in the plants with BP amendment and drought treatment. These results suggest that the soil amended with BP has a positive effect on the transport of nutrients and waters into Camelina by improving water retention in soil under drought condition.

Characteristics of Growth, Yield, and Physiological Responses of Small-Sized Watermelons to Different Soil Moisture Contents Affected by Irrigation Starting Point in a Plastic Greenhouse (소형 수박 시설 재배 시 관수개시점에 따른 토양수분 함량별 생육, 수량 및 생리적 반응 특성 구명)

  • Huh, Yoon-Sun;Kim, Eun-Jeong;Noh, Sol-Ji;Jeon, Yu-Min;Park, Sung-Won;Yun, Geon-Sig;Kim, Tae-Il;Kim, Young-Ho
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.388-398
    • /
    • 2020
  • Watermelon yield mainly depends on soil water content controlled by irrigation in a plastic greenhouse. In this study, we investigated the effect of different soil moisture contents affected by irrigation starting point on growth, yield, and physiological responses of small-sized watermelons. Irrigation was initiated at 5 different levels of soil water content as a starting point with soil moisture detecting sensor after 14 days of transplanting, and stopped at 7 ~ 10 days before harvest. These treatments were compared with the conventional periodic irrigation as control. When soil had the lowest moisture content (-50 kPa), the overall shoot growth was retarded, but the root length and root dry weight increased. The photosynthetic parameters (photosynthetic rate, stomatal conductance, and transpiration rate) of watermelon leaves decreased significantly in the lowest soil moisture content (-50 kPa). On the other hand, the photosynthetic rates of watermelon leaves grown with irrigation starting point between -20 and -40 kPa were observed to be higher than those of other treatments. Fruit set rate and marketable fruit yield increased significantly at -30 kPa and -40 kPa. Proline, abscisic acid (ABA), total phenol and citrulline, which are known to contribute to stress tolerance under drought condition, increased as soil water content decreased, particularly, the largest increases were recorded at -50 kPa. From these results, it was found that an appropriate water supply adjusted with an irrigation starting point between -30 and -40 kPa could help to keep favorable soil water content during the cultivation of small-sized watermelons, promoting the marketable fruit production as well as inducing the vigorous plant growth and reproductive development.

Chlorophyll Fluorescence and $CO_2$ Fixation Capacity in Leaves of Camellia sinensis, Camellia japonica, and Citrus unshiu (차나무, 동백나무, 귤나무 잎에서 엽록소 형광 및 $CO_2$ 흡수능의 비교 분석)

  • Oh, Soonja;Lee, Jin-Ho;Ko, Kwang-Sup;Koh, Seok Chan
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.2
    • /
    • pp.98-106
    • /
    • 2012
  • The chlorophyll fluorescence and photosynthetic $CO_2$ fixation capacity of leaves from three major crop trees found on Jeju Island, Camellia sinensis L., Camellia japonica L., and Citrus unshiu M., were analyzed. The photosynthetic $CO_2$ fixation rate of C. sinensis was similar to that of C. unshiu, and much higher than that of C. japonica which belongs to the same genus. Stomatal conductance in the three species was high at dawn and low during daytime. The intercellular $CO_2$ concentration of the three species was also high at dawn and decreased at midday. The transpiration rate showed an opposite trend from the intercellular $CO_2$ concentration. The photochemical efficiencies of PSII (Fv/Fm) in C. sinensis were slightly lower at midday compared to the level at dawn and/or dusk. The decline in Fv/Fm of C. sinensis at midday was much smaller than that of C. japonica. These results indicate that C. sinensis is better acclimated to high levels of radiation under natural conditions in late summer, although its PSII reaction center was inhibited by strong radiation. Of the chlorophyll fluorescence parameters in the species, the RC/CS decreased significantly while the ABS/RC, TRo/RC, ETo/RC, and DIo/RC increased significantly at midday in late summer. However, C. unshiu did not show significant changes in these values depending on the time of day. Among the three species, the daily $CO_2$ fixation rate in C. sinensis ($320.1mmol\;m^{-2}d^{-1}$) was the highest, followed by that of C. unshiu ($292.5mmol\;m^{-2}d^{-1}$) and C. japonica ($244.8mmol\;m^{-2}d^{-1}$). Thus, C. sinensis may be a valuable crop tree in terms of the uptake of $CO_2$ under natural field conditions.

Photosynthesis and Growth of Southern-type Garlic (Allium sativum L.) in Response to Elevated Temperatures in a Temperature Gradient Tunnel (온도구배터널 내 상승온도에 의한 난지형 마늘(Allium sativum L.)의 광합성 및 생육 특성의 변화)

  • Oh, Seo-Young;Moon, Kyung Hwan;Song, Eun Young;Shin, Minji;Koh, Seok Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.250-260
    • /
    • 2019
  • This study assessed clove germination, shoot growth, photosynthesis and bulb development of southern-type garlic (Allium sativum L.) in a temperature gradient tunnel (TGT), to examine the impacts of increases in temperature on the growth of garlic and find a way to minimize them. The temperatures in the middle and outlet of the TGT were 3.2℃ and 5.8℃ higher, respectively, than the ambient temperature at the tunnel inlet. The germination of garlic cloves was late at temperatures of ambient+3℃ (in the middle of the TGT) and ambient+6℃ (at the outlet) than at ambient temperature (at the inlet). However, bolting and the timing of maximum leaf number per plant were faster at ambient+3℃ or +6℃ than at ambient temperature. Shoot growth was generally greater at ambient temperature. Bulb growth did not significantly differ according to cultivation temperatures, but fresh and dry weights were slightly higher at ambient temperature and ambient+3℃ in the late growth stage. The photosynthesis rate (A), stomatal conductance (gs), and transpiration rate (E) were higher at ambient+3℃ than at ambient temperature. Furthermore, at ambient+3℃, the net photosynthetic rate (Amax) was high, while the dark respiration rate (Rd) was low. At ambient temperature and ambient+3℃, bulb development was healthier, resulting in better productivity and more commercial bulbs, while at ambient+6℃, the bulbs were small and secondary cloves developed, resulting in low commercial value. Therefore, at elevated temperatures caused by global warming, it is necessary to meet the low-temperature requirements before clove sowing, or to delay the sowing time, to improve germination rate and increase yield. The harvest should also be advanced to escape high-temperature stress in the bulb development stage.