DOI QR코드

DOI QR Code

EMS 유도 내염성 증진 사료용 옥수수 돌연변이체 선발 및 특성 분석

Development and Characterization of EMS-induced Mutants with Enhanced Salt Tolerance in Silage Maize

  • 조철오 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 김경화 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 서미숙 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 최만수 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 전재범 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 진민아 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 김둘이 (농촌진흥청 국립식량과학원 작물기초기반과)
  • Cho, Chuloh (Crop Foundation Research Division, National Institute of Crop Science, RDA) ;
  • Kim, Kyung Hwa (Crop Foundation Research Division, National Institute of Crop Science, RDA) ;
  • Seo, Mi-Suk (Crop Foundation Research Division, National Institute of Crop Science, RDA) ;
  • Choi, Man-Soo (Crop Foundation Research Division, National Institute of Crop Science, RDA) ;
  • Chun, Jaebuhm (Crop Foundation Research Division, National Institute of Crop Science, RDA) ;
  • Jin, Mina (Crop Foundation Research Division, National Institute of Crop Science, RDA) ;
  • Kim, Dool-Yi (Crop Foundation Research Division, National Institute of Crop Science, RDA)
  • 투고 : 2020.08.21
  • 심사 : 2020.10.27
  • 발행 : 2020.12.01

초록

본 연구는 간척지 내 재배 가능한 내염성 사료용 옥수수를 선발하기 위해 EMS를 이용하여 돌연변이 집단을 구축하고 기내 선발 방법을 통해 내염성 증진 계통을 선발하였고, 연구결과는 다음과 같다. 1. 사료용 옥수수 모본인 KS140에 다양한 조건으로 EMS를 처리하여 발아율 및 식물의 생육 상태를 조사하였고, 발아율에는 영향을 미치지 않으면서 생육에 큰 영향을 주지않는 0.5% EMS를 돌연변이 유도 적정 농도로 선정하였다. 2. 기내 선발 방법을 통해 선발된 내염성 증진 계통 140ES91 계통을 이용하여 0.5% 염분 스트레스 처리 후 표현형을 조사한 결과, 대조군인 KS140 대비 식물의 초장 및 근장의 생육이 양호하였으며, 높은 proline 함량과 기공전도도를 보였다. 따라서 염분 스트레스 시 높은 proline 함량과 기공전도도가 140ES91 계통의 증가된 내염성과 관련이 있을 것으로 판단된다. 3. 내염성 증진 140ES91 계통의 유전변이 분석을 통해 유전자 기능에 영향을 미칠 수 있는 아미노산 변이를 유발하는 39개의 변이 유전자를 확인하였고, 변이 유전자와 내염성의 관계를 증명하기 위한 유전자 기능 분석이 요구된다. 4. 기 보고된 내염성 관련 유전자들의 발현 양상을 조사한 결과 ABP9과 CIPK31 유전자는 대조군 대비 염분 스트레스 처리 전후 140ES91 계통에서 높은 발현율을 보였으며, CIPK21 유전자는 염분 스트레스 처리 후 대조군에는 발현이 감소하나 140ES91 계통에서는 발현이 유지됨을 확인하였다. 따라서 140ES91 계통에서 보이는 내염성 관련 유전자들의 높은 발현율이 140ES91 계통의 내염성에 관여할 것으로 판단된다. 5. 이상의 결과 기내 선발 방법을 통해 선발한 내염성 증진 계통은 간척지와 같은 염류집적 토양에서 작물의 안정적인 재배와 생산이 가능한 내염성 증진 품종 개발의 육종소재로 활용될 수 있을 것으로 판단된다.

Maize (Zea mays L.) is one of the most valuable agricultural crops and is grown under a wide spectrum of environmental conditions. However, maize is moderately sensitive to salt stress, and soil salinity is a serious threat to its production worldwide. In this study, we used ethyl methane sulfonate (EMS) to generate salt-tolerant silage maize mutants. We screened salt-tolerant lines from 203 M3 mutant populations by evaluating the morphological phenotype after salt stress treatment and selected the 140ES91 line. The 140ES91 mutant showed improved plant growth as well as higher proline content and leaf photosynthetic capacity compared with those of wild-type plants under salt stress conditions. Using whole-genome re-sequencing analysis, 1,103 single nucleotide polymorphisms and 71 insertions or deletions were identified as common variants between KS140 and 140ES91 in comparison with the reference genome B73. Furthermore, the expression patterns of three genes, which are involved in salt stress responses, were increased in the 140ES91 mutant under salt stress. Taken together, the mutant line identified in our study could be used as an improved breeding material for transferring salt tolerance traits in maize varieties.

키워드

참고문헌

  1. Abraham, E., C. Hourton-Cabassa, L. Erdei, and L. Szabados. 2010. Methods for determination of proline in plants. Methods Mol. Biol. 639 : 317-331. doi:10.1007/978-1-60761-702-0_20.
  2. Ashraf, M. and M. Foolad. 2007. M. Ashraf, M. Foolad, Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine, betaine and proline. Environ. Exp. Bot. 59 : 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  3. Boctor, F. N. 1971. An improved method for colorimetric determination of proline with isatin. Anal. Biochem. 43 : 66-70. https://doi.org/10.1016/0003-2697(71)90108-4
  4. Chaves, M. M., J. Flexas, and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103 : 551-560. https://doi.org/10.1093/aob/mcn125
  5. Chen, Y.-L., H.-L. Liang, X.-L. Ma, S.-L. Lou, Y.-Y. Xie, Z.-L. Liu, L.-T. Chen, and Y.-G. Liu. 2013. An efficient rice mutagenesis system based on suspension-cultured cells. J. Integr. Plant Biol. 55 : 122-130. https://doi.org/10.1111/jipb.12000
  6. Chinnusamy, V., A. Jagendorf, and J.-K. Zhu. 2005. Understanding and improving salt tolerance in plants. Crop Sci. 45 : 437-448. https://doi.org/10.2135/cropsci2005.0437
  7. Cho, C., K. H. Kim, M.-S. Choi, J. Chun, M.-S. Seo, N. Jeong, M. Jin, B.-Y. Son, and D.-Y. Kim. 2019. Characterization of a gamma radiation-induced salt-tolerant silage maize mutant. Korean J. Breed. Sci. 51(4) : 318-325. https://doi.org/10.9787/KJBS.2019.51.4.318
  8. Edgerton, M. D. 2009. Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol. 149 : 7-13. https://doi.org/10.1104/pp.108.130195
  9. Falcon, W. P. and R. L. Naylor. 1998. The maize transition in Asia: unlocking the controversy. Am. J. Agric. Eco. 80 : 960-968. https://doi.org/10.2307/1244187
  10. FAO. 2015. Handbook for saline soil management. Eurasian soil partnership implementation plan. Statistical Yearbook 2015 UNFAO, Rome, Italy.
  11. Farooq, M., M. Hussain, A. Wakeel, and K. H. Siddique. 2015. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 35 : 461-481. https://doi.org/10.1007/s13593-015-0287-0
  12. Geilfus, C. M., C. Zorb, and K. H. Muhling. 2010. Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize (Zea mays L.). Plant Physiol. Bioch. 48 : 993-998. https://doi.org/10.1016/j.plaphy.2010.09.011
  13. Gupta, B. and B. Huang. 2014. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genomics. 2014: 701596. doi:10.1155/2014/701596
  14. Han, K.-H., and C.-H. Hwang. 2003. Salt tolerance enhanced by transformation of a P5CS gene in carrot. J. Plant Biotechnol. 5 : 149-153.
  15. Hare, P., W. Cress, and J. Van Staden. 1999. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J. Exp. Bot. 50 : 413-434. https://doi.org/10.1093/jexbot/50.333.413
  16. Hiyane, R., S. Hiyane, A. C. Tang, and J. S. Boyer. 2010. Sucrose feeding reverses shade-induced kernel losses in maize. Ann. Bot. 106 : 395-403. https://doi.org/10.1093/aob/mcq132
  17. Hoque, M. A., E. Okuma, M. N. A. Banu, Y. Nakamura, Y. Shimoishi, and Y. Murata. 2007. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J. Plant Physiol. 164 : 553-561. https://doi.org/10.1016/j.jplph.2006.03.010
  18. Kaya, C., A. L. Tuna, M. Ashraf, and H. Altunlu. 2007. Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environ. Exp. Bot. 60 : 397-403. https://doi.org/10.1016/j.envexpbot.2006.12.008
  19. Kaya, C., A. L. Tuna, and A. M. Okant 2010. Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk. J. Agric. For. 34 : 529-538.
  20. Khatoon, T., K. Hussain, A. Majeed, K. Nawaz, and M. F. Nisar. 2010. Morphological variations in maize (Zea mays L.) under different levels of NaCl at germination stage. World Appl. Sci. J. 8(10) : 1294-1297.
  21. Kim, Y., K. S. Schumaker, and J.-K. Zhu. 2006. EMS mutagenesis of Arabidopsis. Methods Mol. Biol. 323 : 101-103.
  22. Kishor, P. K., S. Sangam, R. N. Amrutha, P. S. Laxmi, K. R. Naidu, K. R. S. S. Rao, S. Rao, K. J. Reddy, P. Theriappan, and N. Sreenivasulu. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr. Sci. 8 : 424-438.
  23. Luo, Q., Q. Wei, R. Wang, Y. Zhang, Y. Zhang, F. Zhang, Y. He, S. Zhou, J. Feng, G. Yang, and G. He. 2017. BdCIPK31, a calcineurin b-like protein-interacting protein kinase, regulates plant response to drought and salt stress. Front Plant Sci. 8 : 1184. doi:10.3389/fpls.2017.01184.
  24. Lutts, S., V. Majerus, and J. M. Kinet. 1999. NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol. Plant. 105(3) : 450-458. https://doi.org/10.1034/j.1399-3054.1999.105309.x
  25. Maas, E. V. and G. J. Hoffman. 1977. Crop salt tolerance-current assessment. J. Irrig. Drain, Div. Am. Soc. Civ. Eng. 103 : 115-134. https://doi.org/10.1061/JRCEA4.0001137
  26. Mickelbart, M. V., P. M. Hasegawa, and J. Bailey-Serres. 2015. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet. 16 : 237-251. https://doi.org/10.1038/nrg3901
  27. Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59 : 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  28. Nanjo, T., T. Kobayashi, Y. Yoshiba, Y. Kakubari, K. YamaguchiShinozaki, and K. Shinozaki. 1999. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 461 : 205-210. https://doi.org/10.1016/S0014-5793(99)01451-9
  29. Nepolean, T., J. Kaul, G. Mukri, and S. Mittal. 2018. Genomicsenabled next-generation breeding approaches for developing system-specific drought tolerant hybrids in maize. Front Plant Sci. 9 : 361. doi:org/10.3389/fpls.2018.00361.
  30. Ondrasek, G., Z. Rengel, and S. Veres. 2011. Soil salinisation and salt stress in crop production. pp. 171-190. In: Shanker AK, Venkateswarlu B. (Eds) Abiotic stress in plants: Mechanisms and adaptations. IntechOpen, Rijeka, Croatia.
  31. Pandey, G. K., P. Kanwar, A. Singh, L. Steinhorst, A. Pandey, A. K. Yadav, I. Tokas, S. K. Sanyal, B. G. Kim, S. C. Lee, Y. H. Cheong, J. K. Kudla, and S. Luan. 2015. Calcineurin b-like protein interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis. Plant Physiol. 169 : 780-792. https://doi.org/10.1104/pp.15.00623
  32. Pathirana, R. 2011. Plant mutation breeding in agriculture. CAB Rev. 6 : 107-126. https://doi.org/10.1079/PAVSNNR20116032
  33. Sandhu, D. and A. Kaundal. 2018. Dynamics of salt tolerance: molecular perspectives. In: Biotechnologies of Crop Improvement, Volume 3 : Genomic Approaches. Springer International Publishing, Cham. pp. 25-40.
  34. Santos, M., T. Camara, P. Rodriguez, I. Claparols, and J. Torne. 1996. Influence of exogenous proline on embryogenic and organogenic maize callus subjected to salt stress. Plant Cell Tissue Organ Cult. 47 : 59-65. https://doi.org/10.1007/BF02318966
  35. Sayed, O. 2003. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica 41 : 321-330. https://doi.org/10.1023/B:PHOT.0000015454.36367.e2
  36. Schubert, S. 2011. Salt resistance of crop plants: physiological characterization of a multigenic trait. In: Hawkesford MJ, Barraclough P (eds) The molecular and physiological basis of nutrient use efficiency in crops. Wiley-Blackwell, Oxford, pp. 443-455.
  37. Shrivastava, P. and R. Kumar. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22 : 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001
  38. Sun, Y., C. Mu, H. Zheng, S. Lu, H. Zhang, X. Zhang, and X. Liu. 2018. Exogenous Pi supplementation improved the salt tolerance of maize (Zea mays L.) by promoting Na+ exclusion. Sci. Rep. 8 : 1-13. https://doi.org/10.1038/s41598-017-17765-5
  39. Talebi, A. B., A. B. Talebi, and B. Shahrokhifar. 2012. Ethyl methane sulphonate (EMS) induced mutagenesis in Malaysian rice (cv. MR219) for lethal dose determination. Am. J. Plant Sci. 3 : 1661-1665. https://doi.org/10.4236/ajps.2012.312202
  40. Wang, C., G. Lu, Y. Hao, H. Guo, Y. Guo, J. Zhao, and H. Cheng. 2017. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246 : 453-469. https://doi.org/10.1007/s00425-017-2704-x
  41. Wang, W., B. Vinocur, and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1) : 1-14. https://doi.org/10.1007/s00425-003-1105-5
  42. Yang, X. and C. Lu. 2005. Photosynthesis is improved by exogenous glycinebetaine in salt‐stressed maize plants. Physiol. Plant. 124 : 343-352. https://doi.org/10.1111/j.1399-3054.2005.00518.x
  43. Yordanov, I., V. Velikova, and T. Tsonev. 2000. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38 : 171-186. https://doi.org/10.1023/A:1007201411474
  44. Zhang, X., L. Wang, H. Meng, H. Wen, Y. Fan, and J. Zhao. 2011. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol. Biol. 75 : 365-378. https://doi.org/10.1007/s11103-011-9732-x
  45. Zhu, B., J. Su, M. Chang, D. P. S. Verma, Y. L. Fan, and R. Wu. 1998. Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Sci. 139 : 41-48. https://doi.org/10.1016/S0168-9452(98)00175-7
  46. Zhu, J.-K. 2001. Plant salt tolerance. Trends Plant Sci. 6 : 66-71. https://doi.org/10.1016/S1360-1385(00)01838-0
  47. Zhu, J.-K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53 : 247-273. https://doi.org/10.1146/annurev.arplant.53.091401.143329