Browse > Article
http://dx.doi.org/10.7740/kjcs.2020.65.4.406

Development and Characterization of EMS-induced Mutants with Enhanced Salt Tolerance in Silage Maize  

Cho, Chuloh (Crop Foundation Research Division, National Institute of Crop Science, RDA)
Kim, Kyung Hwa (Crop Foundation Research Division, National Institute of Crop Science, RDA)
Seo, Mi-Suk (Crop Foundation Research Division, National Institute of Crop Science, RDA)
Choi, Man-Soo (Crop Foundation Research Division, National Institute of Crop Science, RDA)
Chun, Jaebuhm (Crop Foundation Research Division, National Institute of Crop Science, RDA)
Jin, Mina (Crop Foundation Research Division, National Institute of Crop Science, RDA)
Kim, Dool-Yi (Crop Foundation Research Division, National Institute of Crop Science, RDA)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.65, no.4, 2020 , pp. 406-415 More about this Journal
Abstract
Maize (Zea mays L.) is one of the most valuable agricultural crops and is grown under a wide spectrum of environmental conditions. However, maize is moderately sensitive to salt stress, and soil salinity is a serious threat to its production worldwide. In this study, we used ethyl methane sulfonate (EMS) to generate salt-tolerant silage maize mutants. We screened salt-tolerant lines from 203 M3 mutant populations by evaluating the morphological phenotype after salt stress treatment and selected the 140ES91 line. The 140ES91 mutant showed improved plant growth as well as higher proline content and leaf photosynthetic capacity compared with those of wild-type plants under salt stress conditions. Using whole-genome re-sequencing analysis, 1,103 single nucleotide polymorphisms and 71 insertions or deletions were identified as common variants between KS140 and 140ES91 in comparison with the reference genome B73. Furthermore, the expression patterns of three genes, which are involved in salt stress responses, were increased in the 140ES91 mutant under salt stress. Taken together, the mutant line identified in our study could be used as an improved breeding material for transferring salt tolerance traits in maize varieties.
Keywords
140ES91; EMS; mutagenesis; salt tolerance; silage maize;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Santos, M., T. Camara, P. Rodriguez, I. Claparols, and J. Torne. 1996. Influence of exogenous proline on embryogenic and organogenic maize callus subjected to salt stress. Plant Cell Tissue Organ Cult. 47 : 59-65.   DOI
2 Sayed, O. 2003. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica 41 : 321-330.   DOI
3 Schubert, S. 2011. Salt resistance of crop plants: physiological characterization of a multigenic trait. In: Hawkesford MJ, Barraclough P (eds) The molecular and physiological basis of nutrient use efficiency in crops. Wiley-Blackwell, Oxford, pp. 443-455.
4 Shrivastava, P. and R. Kumar. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22 : 123-131.   DOI
5 Nepolean, T., J. Kaul, G. Mukri, and S. Mittal. 2018. Genomicsenabled next-generation breeding approaches for developing system-specific drought tolerant hybrids in maize. Front Plant Sci. 9 : 361. doi:org/10.3389/fpls.2018.00361.   DOI
6 Farooq, M., M. Hussain, A. Wakeel, and K. H. Siddique. 2015. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 35 : 461-481.   DOI
7 Geilfus, C. M., C. Zorb, and K. H. Muhling. 2010. Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize (Zea mays L.). Plant Physiol. Bioch. 48 : 993-998.   DOI
8 Abraham, E., C. Hourton-Cabassa, L. Erdei, and L. Szabados. 2010. Methods for determination of proline in plants. Methods Mol. Biol. 639 : 317-331. doi:10.1007/978-1-60761-702-0_20.   DOI
9 Ashraf, M. and M. Foolad. 2007. M. Ashraf, M. Foolad, Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine, betaine and proline. Environ. Exp. Bot. 59 : 206-216.   DOI
10 Boctor, F. N. 1971. An improved method for colorimetric determination of proline with isatin. Anal. Biochem. 43 : 66-70.   DOI
11 Gupta, B. and B. Huang. 2014. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genomics. 2014: 701596. doi:10.1155/2014/701596   DOI
12 Han, K.-H., and C.-H. Hwang. 2003. Salt tolerance enhanced by transformation of a P5CS gene in carrot. J. Plant Biotechnol. 5 : 149-153.
13 Hare, P., W. Cress, and J. Van Staden. 1999. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J. Exp. Bot. 50 : 413-434.   DOI
14 Hiyane, R., S. Hiyane, A. C. Tang, and J. S. Boyer. 2010. Sucrose feeding reverses shade-induced kernel losses in maize. Ann. Bot. 106 : 395-403.   DOI
15 Hoque, M. A., E. Okuma, M. N. A. Banu, Y. Nakamura, Y. Shimoishi, and Y. Murata. 2007. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J. Plant Physiol. 164 : 553-561.   DOI
16 Kaya, C., A. L. Tuna, M. Ashraf, and H. Altunlu. 2007. Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environ. Exp. Bot. 60 : 397-403.   DOI
17 Kaya, C., A. L. Tuna, and A. M. Okant 2010. Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk. J. Agric. For. 34 : 529-538.
18 FAO. 2015. Handbook for saline soil management. Eurasian soil partnership implementation plan. Statistical Yearbook 2015 UNFAO, Rome, Italy.
19 Chen, Y.-L., H.-L. Liang, X.-L. Ma, S.-L. Lou, Y.-Y. Xie, Z.-L. Liu, L.-T. Chen, and Y.-G. Liu. 2013. An efficient rice mutagenesis system based on suspension-cultured cells. J. Integr. Plant Biol. 55 : 122-130.   DOI
20 Chaves, M. M., J. Flexas, and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103 : 551-560.   DOI
21 Chinnusamy, V., A. Jagendorf, and J.-K. Zhu. 2005. Understanding and improving salt tolerance in plants. Crop Sci. 45 : 437-448.   DOI
22 Cho, C., K. H. Kim, M.-S. Choi, J. Chun, M.-S. Seo, N. Jeong, M. Jin, B.-Y. Son, and D.-Y. Kim. 2019. Characterization of a gamma radiation-induced salt-tolerant silage maize mutant. Korean J. Breed. Sci. 51(4) : 318-325.   DOI
23 Edgerton, M. D. 2009. Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol. 149 : 7-13.   DOI
24 Falcon, W. P. and R. L. Naylor. 1998. The maize transition in Asia: unlocking the controversy. Am. J. Agric. Eco. 80 : 960-968.   DOI
25 Yordanov, I., V. Velikova, and T. Tsonev. 2000. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38 : 171-186.   DOI
26 Sun, Y., C. Mu, H. Zheng, S. Lu, H. Zhang, X. Zhang, and X. Liu. 2018. Exogenous Pi supplementation improved the salt tolerance of maize (Zea mays L.) by promoting Na+ exclusion. Sci. Rep. 8 : 1-13.   DOI
27 Talebi, A. B., A. B. Talebi, and B. Shahrokhifar. 2012. Ethyl methane sulphonate (EMS) induced mutagenesis in Malaysian rice (cv. MR219) for lethal dose determination. Am. J. Plant Sci. 3 : 1661-1665.   DOI
28 Wang, C., G. Lu, Y. Hao, H. Guo, Y. Guo, J. Zhao, and H. Cheng. 2017. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246 : 453-469.   DOI
29 Wang, W., B. Vinocur, and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1) : 1-14.   DOI
30 Yang, X. and C. Lu. 2005. Photosynthesis is improved by exogenous glycinebetaine in salt‐stressed maize plants. Physiol. Plant. 124 : 343-352.   DOI
31 Zhang, X., L. Wang, H. Meng, H. Wen, Y. Fan, and J. Zhao. 2011. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol. Biol. 75 : 365-378.   DOI
32 Zhu, B., J. Su, M. Chang, D. P. S. Verma, Y. L. Fan, and R. Wu. 1998. Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Sci. 139 : 41-48.   DOI
33 Zhu, J.-K. 2001. Plant salt tolerance. Trends Plant Sci. 6 : 66-71.   DOI
34 Zhu, J.-K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53 : 247-273.   DOI
35 Luo, Q., Q. Wei, R. Wang, Y. Zhang, Y. Zhang, F. Zhang, Y. He, S. Zhou, J. Feng, G. Yang, and G. He. 2017. BdCIPK31, a calcineurin b-like protein-interacting protein kinase, regulates plant response to drought and salt stress. Front Plant Sci. 8 : 1184. doi:10.3389/fpls.2017.01184.   DOI
36 Khatoon, T., K. Hussain, A. Majeed, K. Nawaz, and M. F. Nisar. 2010. Morphological variations in maize (Zea mays L.) under different levels of NaCl at germination stage. World Appl. Sci. J. 8(10) : 1294-1297.
37 Kim, Y., K. S. Schumaker, and J.-K. Zhu. 2006. EMS mutagenesis of Arabidopsis. Methods Mol. Biol. 323 : 101-103.
38 Kishor, P. K., S. Sangam, R. N. Amrutha, P. S. Laxmi, K. R. Naidu, K. R. S. S. Rao, S. Rao, K. J. Reddy, P. Theriappan, and N. Sreenivasulu. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr. Sci. 8 : 424-438.
39 Lutts, S., V. Majerus, and J. M. Kinet. 1999. NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol. Plant. 105(3) : 450-458.   DOI
40 Maas, E. V. and G. J. Hoffman. 1977. Crop salt tolerance-current assessment. J. Irrig. Drain, Div. Am. Soc. Civ. Eng. 103 : 115-134.   DOI
41 Pathirana, R. 2011. Plant mutation breeding in agriculture. CAB Rev. 6 : 107-126.   DOI
42 Mickelbart, M. V., P. M. Hasegawa, and J. Bailey-Serres. 2015. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet. 16 : 237-251.   DOI
43 Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59 : 651-681.   DOI
44 Nanjo, T., T. Kobayashi, Y. Yoshiba, Y. Kakubari, K. YamaguchiShinozaki, and K. Shinozaki. 1999. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 461 : 205-210.   DOI
45 Ondrasek, G., Z. Rengel, and S. Veres. 2011. Soil salinisation and salt stress in crop production. pp. 171-190. In: Shanker AK, Venkateswarlu B. (Eds) Abiotic stress in plants: Mechanisms and adaptations. IntechOpen, Rijeka, Croatia.
46 Pandey, G. K., P. Kanwar, A. Singh, L. Steinhorst, A. Pandey, A. K. Yadav, I. Tokas, S. K. Sanyal, B. G. Kim, S. C. Lee, Y. H. Cheong, J. K. Kudla, and S. Luan. 2015. Calcineurin b-like protein interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis. Plant Physiol. 169 : 780-792.   DOI
47 Sandhu, D. and A. Kaundal. 2018. Dynamics of salt tolerance: molecular perspectives. In: Biotechnologies of Crop Improvement, Volume 3 : Genomic Approaches. Springer International Publishing, Cham. pp. 25-40.