DOI QR코드

DOI QR Code

Characteristics of Growth, Yield, and Physiological Responses of Small-Sized Watermelons to Different Soil Moisture Contents Affected by Irrigation Starting Point in a Plastic Greenhouse

소형 수박 시설 재배 시 관수개시점에 따른 토양수분 함량별 생육, 수량 및 생리적 반응 특성 구명

  • Huh, Yoon-Sun (Department of Crop Research, Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Kim, Eun-Jeong (Watermelon Research Institute, Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Noh, Sol-Ji (Watermelon Research Institute, Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Jeon, Yu-Min (Watermelon Research Institute, Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Park, Sung-Won (Watermelon Research Institute, Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Yun, Geon-Sig (Watermelon Research Institute, Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Kim, Tae-Il (Watermelon Research Institute, Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Kim, Young-Ho (Department of Crop Research, Chungcheongbuk-do Agricultural Research and Extension Services)
  • 허윤선 (충청북도농업기술원 작물연구과) ;
  • 김은정 (충청북도농업기술원 수박연구소) ;
  • 노솔지 (충청북도농업기술원 수박연구소) ;
  • 전유민 (충청북도농업기술원 수박연구소) ;
  • 박성원 (충청북도농업기술원 수박연구소) ;
  • 윤건식 (충청북도농업기술원 수박연구소) ;
  • 김태일 (충청북도농업기술원 수박연구소) ;
  • 김영호 (충청북도농업기술원 작물연구과)
  • Received : 2020.07.21
  • Accepted : 2020.09.16
  • Published : 2020.10.31

Abstract

Watermelon yield mainly depends on soil water content controlled by irrigation in a plastic greenhouse. In this study, we investigated the effect of different soil moisture contents affected by irrigation starting point on growth, yield, and physiological responses of small-sized watermelons. Irrigation was initiated at 5 different levels of soil water content as a starting point with soil moisture detecting sensor after 14 days of transplanting, and stopped at 7 ~ 10 days before harvest. These treatments were compared with the conventional periodic irrigation as control. When soil had the lowest moisture content (-50 kPa), the overall shoot growth was retarded, but the root length and root dry weight increased. The photosynthetic parameters (photosynthetic rate, stomatal conductance, and transpiration rate) of watermelon leaves decreased significantly in the lowest soil moisture content (-50 kPa). On the other hand, the photosynthetic rates of watermelon leaves grown with irrigation starting point between -20 and -40 kPa were observed to be higher than those of other treatments. Fruit set rate and marketable fruit yield increased significantly at -30 kPa and -40 kPa. Proline, abscisic acid (ABA), total phenol and citrulline, which are known to contribute to stress tolerance under drought condition, increased as soil water content decreased, particularly, the largest increases were recorded at -50 kPa. From these results, it was found that an appropriate water supply adjusted with an irrigation starting point between -30 and -40 kPa could help to keep favorable soil water content during the cultivation of small-sized watermelons, promoting the marketable fruit production as well as inducing the vigorous plant growth and reproductive development.

본 연구는 시설 내 소형 수박 재배 시 관수개시점에 따른 토양수분 함량별 생육, 수량 및 생리적 반응 특성의 차이를 구명하고 소형 수박 생산에 유리한 관수조건을 구명하고자 수행하였다. 토양수분 센서를 이용하여 정식 후 14일부터 수확 7 ~ 10일 전까지 관수개시점별 5처리(-10, -20, -30, -40, 50 kPa)를 두어 관수하였다. 토양수분 함량이 가장 낮은 개시점-50 kPa 처리에서 전반적인 지상부 생육특성은 저조하였으나, 근장 및 뿌리 건물율은 증가하였다. 광합성률, 기공전도도 및 증산율 비교 시, 관수개시점-50 kPa 처리에서 가장 낮았고, -20 kPa ~ -40 kPa 처리 시 광합성률은 높게 조사되었다. 착과율 및 총 상품수량은 -30 kPa 및 -40 kPa 처리에서 각각 84.7 ~ 85.5%, 5,144 ~ 5,305 kg/10a으로 유의하게 증가하였다. 식물체의 외부환경 관련 스트레스 지표 물질로 알려진 프롤린, ABA, 총 페놀 및 시트룰린의 함량은 토양수분 함량이 낮아질수록 증가하였으며, 특히 관수개시점-50 kPa 처리에서 가장 높게 조사되었다. 따라서 이와 같은 결과를 종합해 볼 때, 시설 내 안정적인 소형 수박 생산을 위하여 관수개시점을 -30 kPa ~ -40 kPa 수준으로 조정하여 토양수분 함량을 조절하는 것이 수박 생육 향상 및 상품수량 증대에 가장 유리한 것으로 판단되었다.

Keywords

References

  1. Akashi, K., C. Miyake, and A. Yokota. 2001. Citrulline, a novel compatible solute in drought‐tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. Febs Letters. 508:438-442. https://doi.org/10.1016/S0014-5793(01)03123-4
  2. Allen, D.J. and D.R. Ort. 2001. Impact of chilling temperatures on photosynthesis in warm climate plants. Trends in Plant Science. 6:36-42. https://doi.org/10.1016/S1360-1385(00)01808-2
  3. Amici, A., R.L. Levine, L. Tsai and E.R. Stadtman. 1989. Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metalcatalyzed oxidation reactions. Journal of Biological Chemistry. 264:3341-3346. https://doi.org/10.1016/S0021-9258(18)94071-8
  4. Ashraf, M. and M.R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and experimental botany. 59:206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  5. Ayaz, F.A., A. Kadioglu, and R. Turgut. 2000. Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Ctenanthe setosa (Rosc.) Eichler. Canadian Journal of Plant Sciences. 80:373-378. https://doi.org/10.4141/P99-005
  6. Bang, H., D.I. Leskovar, D.A. Bender, and K. Crosby. 2004. Deficit irrigation impact on lycopene, soluble solids, firmness and yield of diploid and triploid watermelon in three distinct environments. The Journal of Horticultural Science and Biotechnology. 79:885-890. https://doi.org/10.1080/14620316.2004.11511861
  7. Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39:205-207. https://doi.org/10.1007/BF00018060
  8. Behnam, B., S. Iuchi, M. Fujita, Y. Fujita, H. Takasaki, Y. Osakabe, K. Yamaguchi-Shinozaki, M. Kobayashi, and K. Shinozaki. 2013. Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration-inducible transcription. DNA Research. 20:315-324. https://doi.org/10.1093/dnares/dst012
  9. Chalmers, D.J., G. Burge, P.H. Jerie, and P.D. Mitchell. 1986. The mechanism of regulation of ‘Bartlett’ pear fruit and vegetative growth by irrigation with holding and regulated deficit irrigation. Journal of the American Society for Horticultural Science. 111:904-907.
  10. Chandra, S. 2003. Effects of leaf age on transpiration and energy exchange of Ficus glomerata, a multipurpose tree species of central Himalayas. Physiology and Molecular Biology of Plants. 9:255-260.
  11. Chaves, M.M., J. Flexas, and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany. 103:551-560. https://doi.org/10.1093/aob/mcn125
  12. Chun, O.K., D. Kim, and C.Y. Lee. 2003. Superoxide radical scavenging activity of the major polyphenols in fresh plums. Journal of agricultural and food chemistry. 51:8067-8072. https://doi.org/10.1021/jf034740d
  13. Dasgan, H.Y., S. Kusvuran, K. Abak, L. Leport, F. Larher, and A. Bouchereau. 2009. The relationship between citrulline accumulation and salt tolerance during the vegetative growth of melon (Cucumis melo L.). Plant, Soil and Environment, 55:51-57. https://doi.org/10.17221/316-PSE
  14. Desai, J.B. and V.K. Patil. 1984. Effects of N, P and K on the fruit yield of watermelon. Journal of Maharashtra Agricultural University. 9:308-309.
  15. Elmstrom, G.W., B.J. Locascio, and J.M. Myers. 1981. Watermelon response to drip and sprinkler irrigation. Proceedings of the Florida State Horticultural Society. 94:161.
  16. Endo, A., Y. Sawada, H. Takahashi, M. Okamoto, K. Ikegami, H. Koiwai, M. Seo, T. Toyomasu, W. Mitsuhashi, K. Shinozaki, M. Nakazono, Y. Kamiya, T. Koshiba, and E. Nambara. 2008. Drought induction of Arabidopsis 9-cisepoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiology. 147:1984-1993. https://doi.org/10.1104/pp.108.116632
  17. Erdem, Y., A.N. Yüksel, and A.H. Orta. 2001. The effects of deficit irrigation on watermelon yield, water use and quality characteristics. Pakistan Journal of Biological Sciences. 4:785-789. https://doi.org/10.3923/pjbs.2001.785.789
  18. Flexas, J., J. Bota, J. Galmes, H. Medrano, and M. Ribas-Carbo. 2006. Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiologia Plantarum. 127:343-352. https://doi.org/10.1111/j.1399-3054.2006.00621.x
  19. Galdeano-Gomez, E., J.A. Zepeda-Zepeda, L. Piedra-Munoz, and L.L. Vega-Lopez. 2017. Family farm’s features influencing socio-economic sustainability: An analysis of the agri-food sector in southeast Spain. New Medit. 16:50-62.
  20. Gonzalez, A.M., S. Bonachela, and M.D. Fernandez. 2009. Regulated deficit irrigation in green bean and watermelon greenhouse crops. Scientia horticulturae. 122:527-531. https://doi.org/10.1016/j.scienta.2009.06.022
  21. Hartz, T.K. 1997. Effects of drip irrigation scheduling on muskmelon yield and quality. Scientia Horticulturae. 69:117-122. https://doi.org/10.1016/S0304-4238(96)00992-2
  22. Heidari, Y. and P. Moaveni. 2009. Study of drought stress on ABA accumulation and proline among in different genotypes forage corn. Research journal of biological sciences. 4:1121-1124.
  23. Hoogenboom, G., M.G. Huck, and C.M. Peterson. 1987. Root growth rate of soybean as affected by drought stress. Agronomy Journal. 79:607-614. https://doi.org/10.2134/agronj1987.00021962007900040004x
  24. Iuchi, S., M. Kobayashi, T. Taji, M. Naramoto, M. Seki, T. Kato, S. Tabata, Y. Kakubari, K. Yamaguchi-Shinozaki, and K. Shinozaki. 2001. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant Journal. 27:325-333. https://doi.org/10.1046/j.1365-313x.2001.01096.x
  25. Jaimez, R.E., F. Rada, and C. Garcia-Nunez. 1999. The effect of irrigation frequency on water and carbon relations in three cultivars of sweet pepper (Capsicum chinense Jacq), in a tropical semiarid region. Scientia Horticulturae. 81:301-308. https://doi.org/10.1016/S0304-4238(99)00017-5
  26. Kawasaki, S., C. Miyake, T. Kohchi, S. Fujii, M. Uchida, and A. Yokota. 2000. Responses of wild watermelon to drought stress: accumulation of an ArgE homologue and citrulline in leaves during water deficits. Plant and Cell Physiology. 41: 864-873. https://doi.org/10.1093/pcp/pcd005
  27. Kirnak, H., C. Kaya, I. Tas, and D. Higgs. 2001. The influence of water deficit on vegetative growth, physiology, fruit yield and quality in eggplants. Bulgarian Journal of Plant Physiology. 27:34-46.
  28. Kirnak, H., I. Tas, C. Kaya, and D. Higgs. 2002. Effects of deficit irrigation on growth, yield and fruit quality of eggplant under semi-arid conditions. Australian Journal of Agricultural Research. 53:1367-1373. https://doi.org/10.1071/AR02014
  29. Kobashi, K., S. Sugaya, H. Gemma, and S. Iwahori. 2001. Effect of abscisic acid (ABA) on sugar accumulation in the flesh tissue of peach fruit at the start of the maturation stage. Plant Growth Regulation. 35:215-223. https://doi.org/10.1023/A:1014421712254
  30. KOSIS. 2017. Agricultural area survey. Korean Statistical Information Service.
  31. Lawlor, D.W. 2002. Limitation to photosynthesis in waterstressed leaves: stomata vs. metabolism and the role of ATP. Annals of Botany. 89:871-885. https://doi.org/10.1093/aob/mcf110
  32. Leskovar, D.I., P. Perkins-Veazie, and A. Meiri. 1999. Deficit irrigation affects yield and quality of triploid and diploid watermelon. HortScience. 34:523
  33. Leskovar, D.I., H. Bang, K. Crosby, N. Maness, A. Franco, and P. Perkins-Veazie. 2004. Lycopene, carbohydrates, ascorbic acid and yield components of diploid and triploid watermelon cultivars are affected by deficit irrigation. The Journal of Horticultural Science and Biotechnology. 79:75-81. https://doi.org/10.1080/14620316.2004.11511739
  34. Lo Gullo, M.A., A. Nardini, S. Salleo, and M.T. Tyree. 1998. Changes in root hydraulic conductance of Olea oleaster seedlings following drought stress and irrigation. New Phytologist. 140:25-31. https://doi.org/10.1046/j.1469-8137.1998.00258.x
  35. Mandal, S., S. Yadav, S. Yadav, and R.K. Nema. 2009. Antioxidants: A review. Journal of Chemical. Pharmacology. Res. 1:102-104.
  36. Menconi, M., C.L.M. Sgherri, C. Pinzino ,and F. Navari-Izzo. 1995. Activated oxygen production and detoxification in wheat plants subjected to a water deficit programme. Journal of Experimental Botany. 46:1123-1130. https://doi.org/10.1093/jxb/46.9.1123
  37. Merrill, S.D. and S.L. Rawlins. 1979. Distribution and Growth of Sorghum Roots in Response to Irrigation Frequency 1. Agronomy Journal. 71:738-745. https://doi.org/10.2134/agronj1979.00021962007100050009x
  38. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in plant science. 7:405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  39. Nomani, H. 1998. Plant water relations and control of cell elongation at low water potentials. Journal of Plant Research. 111:373-382. https://doi.org/10.1007/BF02507801
  40. Oliveira, P.G.F., O.D.C. Moreira, L. Branco, R.N. Costa, and C.N. Dias. 2012. Efficiency of use of production factors water and potassium in the watermelon crop irrigated with water of reuse. Revista Brasileira de Engenharia Agricola e Ambiental. 16:153-158. https://doi.org/10.1590/S1415-43662012000200004
  41. Osakabe, Y., K. Osakabe, K. Shinozaki, and L.S.P. Tran. 2014. Response of plants to water stress. Frontiers in Plant Science. 5:86.
  42. Pandey, R.K., W.A.T. Herrera, A.N. Villegas, and J.W. Pendleton. 1984. Drought response of grain legumes under irrigation gradient: III. Plant growth. Agronomy Journal. 76:557-560. https://doi.org/10.2134/agronj1984.00021962007600040011x
  43. Park, Y. and S. Cho. 2012. Watermelon production and breeding in South Korea. Israel Journal of Plant Sciences. 60:415-423.
  44. Patakas, A., N. Nikolaou, E. Zioziou, K. Radoglou, and B. Noitsakis. 2002. The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Science. 163:361-367. https://doi.org/10.1016/S0168-9452(02)00140-1
  45. Perkins-Veazie, P. 2009. Cucurbits, watermelon, and benefits to human health. IV International Symposium on Cucurbits. 871:25-32
  46. Pirasteh-Anosheh, H., A. Saed-Moucheshi, H. Pakniyat, and M. Pessarakli. 2016. Stomatal responses to drought stress. Water stress and crop plants. 24-40.
  47. Proietti, S., Y. Rouphael, G. Colla, M. Cardarelli, M. De Agazio, M. Zacchini, E. Rea, S. Moscatello, and A. Battistelli. 2008. Fruit quality of mini‐watermelon as affected by grafting and irrigation regimes. Journal of the Science of Food and Agriculture. 88:1107-1114. https://doi.org/10.1002/jsfa.3207
  48. Pulupol, L.U., M.H. Behboudia, and K.J. Fisher. 1996. Growth, yield and postharvest attributes of glasshouse tomatoes produced under deficit irrigation. HortScience. 31: 926-929. https://doi.org/10.21273/HORTSCI.31.6.926
  49. Rimando, A.M. and P.M. Perkins-Veazie. 2005. Determination of citrulline in watermelon rind. Journal of Chromatography A. 1078:196-200. https://doi.org/10.1016/j.chroma.2005.05.009
  50. Rodriguez Dominguez, C.M. and T.J. Brodribb. 2020. Declining root water transport drives stomatal closure in olive under moderate water stress. New Phytologist. 225:126-134. https://doi.org/10.1111/nph.16177
  51. Rouphael, Y., M. Cardarelli, G. Colla, and E. Rea. 2008. Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience. 43:730-736. https://doi.org/10.21273/HORTSCI.43.3.730
  52. Saraiva, K.R., T.V.D.A. Viana, F. Bezerra, M. Lima, S.C. Costa, and R.S. Gondim. 2017. Regulated deficit irrigation and different mulch types on fruit quality and yield of watermelon. Revista Caatinga. 30:437-446. https://doi.org/10.1590/1983-21252017v30n219rc
  53. Shaw, B., T.H. Thomas, and D.T. Cooke. 2002. Responses of sugar beet (Beta vulgaris L.) to drought and nutrient deficiency stress. Plant Growth Regulation. 37:77-83 https://doi.org/10.1023/A:1020381513976
  54. Simsek, M., M. Kacira, and T. Tonkaz. 2004. The effects of different drip irrigation regimes on watermelon [Citrullus lanatus (Thunb.)] yield and yield components under semi-arid climatic conditions. Australian Journal of Agricultural Research. 55:1149-1157. https://doi.org/10.1071/AR03264
  55. Singh, S.D and P. Singh. 1978. Value of drip irrigation compared with conventional irrigation for vegetable production in a hot arid climate 1. Agronomy Journal. 70:945-947. https://doi.org/10.2134/agronj1978.00021962007000060013x
  56. Sousa, J.R.M., E.S. Oliveira, J.A.C. Wanderley, F.C.G. Alvino, and M.E.B. Brito. 2012. Efeito do estresse hídrico sobre caracteristicas de pos-colheita da melancieira. Agropecuaria Cientifica No Seiarido. 8:46-53.
  57. Sponchiado, B.N., J.W. White, J.A. Castillo, and P.G. Jones. 1980. Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Experimental Agriculture. 25:249-257. https://doi.org/10.1017/S0014479700016756
  58. Srinivas, K., D.M. Hegde ,and G.V. Havanagi. 1989. Irrigation studies on watermelon (Citrullus lanatus (Thunb) Matsum et Nakai). Irrigation Science. 10:293-301. https://doi.org/10.1007/BF00257494
  59. Wada, M. 1930. Ueber Citrulline, eine neue Aminosäurein Pressaft der Wassermelone, Citrullus vulgaris Schrad. Biochem. Zeit. 224:420-429.
  60. Widaryanto, E., K.P. Wicaksono, and H. Najiyah. 2017. Drought Effect Simulation on the Growth and Yield Quality of Melon (Cucumis melo L.). Journal of Agronomy. 16:147-153. https://doi.org/10.3923/ja.2017.147.153
  61. Yokota, A., S. Kawasaki, M. Iwano, C. Nakamura, C. Miyake, and K. Akashi. 2002. Citrulline and DRIP‐1 protein (ArgE homologue) in drought tolerance of wild watermelon. Annals of Botany. 89:825-832. https://doi.org/10.1093/aob/mcf074
  62. Zheng, J.C. and X.M.W. Jian. 2009. Effect of regulated deficit irrigation on water use efficiency and fruit quality of miniwatermelon in greenhouse. Journal of Nuclear Agricultural Sciences. 1:37. https://doi.org/10.22620/agrisci.2009.02.006